
Lecture 5: Decision Trees

• Decision Trees
• extract a set of classification rules to classify a given instance

• like IF-ELSE statements, testing different attributes

• ML model that is highly interpretable by humans

Decision Trees

2Bruno Castro da Silva

if #friends >= 50
 if funny_score > 3
 Likes >= 30
 else
 Likes < 30
else
 if funny_score > 9
 Likes >= 30
 else
 Likes < 30

#friends funny  score Likes

Post1 40 8 28
Post2 36 10 28
Post3 20 6 16
Post4 56 4 31
Post5 58 0 29
Post6 46 10 33

Decision Trees

Decision Trees

3Bruno Castro da Silva

Learning to Play the 20 Questions Game

http://en.akinator.com/

4Bruno Castro da Silva

5Bruno Castro da Silva

6Bruno Castro da Silva

7Bruno Castro da Silva

8Bruno Castro da Silva

9Bruno Castro da Silva

10Bruno Castro da Silva

11Bruno Castro da Silva

12Bruno Castro da Silva

13Bruno Castro da Silva

Decision Trees

• Which attributes of a person to test first, to guess as fast as possible?

• Is the person a man or a woman?

• Is the person older than 5 years old?

• G(“Gender") = 0.9

• G(“Lives_in_USA”) = 0.73

• G(“Is_Politician”) = 0.36

• …

Information Gain

Entropy of a set (or dataset)

14Bruno Castro da Silva

Decision Trees
Loan Concession

Application

15Bruno Castro da Silva

Decision Trees

• Performs a series of tests on attributes of an instance

• eventually leading to decision/prediction about the class of that instance

• Decision Tree
• Simple ML model/algorithm

• Widely used in practice

• Easy to interpret

Bruno Castro da Silva 16

A decision tree for

testing loan suitability

"Real-World Functional Programming with Examples in F# and C#”. (Skeet and Petricek, 2010)

Decision Trees

Root node

Decision node

Leaf/terminal node

17Bruno Castro da Silva

A decision tree for

testing loan suitability

"Real-World Functional Programming with Examples in F# and C#”. (Skeet and Petricek, 2010)

Root node

Decision node

Leaf/terminal node

Decision Trees

Hierarchical model used to decide/predict
to which class a given instance belongs

18Bruno Castro da Silva

Student?

Age?

Credit_Score?Yes

Yes

Young Middle Age Older Adult

No

No Yes

Yes

Regular Excellent

No

Each instance, 𝑥!, is described by the following attributes

𝑥! = [Student, Age, Credit_Score], where 𝑦! ∈ {Yes, No}

How likely it is that a given client will buy a computer?

○ Each non-leaf node tests the value of a given attribute
○ Each branch corresponds to one possible value of that attribute
○ Each leaf corresponds to predicting one particular class
○ The path from the root node to a leaf defines a classification rule

Decision Trees

Bruno Castro da Silva 19

Student?

Age?

Credit_Score?Yes

Yes

Young Middle Age Older Adult

No

No Yes

Yes

Regular Excellent

No

How likely it is that a given client will buy a computer?

Decision Trees

Instance to be classified:

Student Age Credit_Score
Yes Young Regular

Will_Buy_Computer
??

Bruno Castro da Silva 20

Student?

Age?

Credit_Score?Yes

Yes

Young Middle Age Older Adult

No

No Yes

Yes

Regular Excellent

No

How likely it is that a given client will buy a computer?

Decision Trees

Instance to be classified:

Student Age Credit_Score
Yes Young Regular

Will_Buy_Computer
??

Starts from the root node

Bruno Castro da Silva 21

Student?

Age?

Credit_Score?Yes

Yes

Young Middle Age Older Adult

No

No Yes

Yes

Regular Excellent

No

How likely it is that a given client will buy a computer?

Decision Trees

Instance to be classified:

Student Age Credit_Score
Yes Young Regular

Will_Buy_Computer
??

Bruno Castro da Silva 22

Student?

Age?

Credit_Score?Yes

Yes

Young Middle Age Older Adult

No

No Yes

Yes

Regular Excellent

No

How likely it is that a given client will buy a computer?

Decision Trees

Instance to be classified:

Student Age Credit_Score
Yes Young Regular

Will_Buy_Computer
??

Bruno Castro da Silva 23

Student?

Age?

Credit_Score?Yes

Yes

Young Middle Age Older Adult

No

No Yes

Yes

Regular Excellent

No

How likely it is that a given client will buy a computer?

Decision Trees

Instance to be classified:

Student Age Credit_Score
Yes Young Regular

Will_Buy_Computer
??

Bruno Castro da Silva 24

Student?

Age?

Credit_Score?Yes

Yes

Young Middle Age Older Adult

No

No Yes

Yes

Regular Excellent

No

How likely it is that a given client will buy a computer?

Decision Trees

Instance to be classified:

Student Age Credit_Score
Yes Young Regular

Will_Buy_Computer
Yes

Predicted Class

Bruno Castro da Silva 25

Student?

Age?

Credit_Score?Yes

Yes

Young Middle Age Older Adult

No

No Yes

Yes

Regular Excellent

No

How would the following instance be classified?

Decision Trees

Instance to be classified:

Student Age Credit_Score
No Older Adult Regular

Will_Buy_Computer
No

Predicted Class

Bruno Castro da Silva 26

Student?

Age?

Credit_Score?Yes

Yes

Young Middle Age Older Adult

No

No Yes

Yes

Regular Excellent

No

Decision trees encode classification rules via (implicit) IF-ELSE statements

Decision Trees

IF Age = Young
AND

IF Student = No
THEN

Will_Buy_Computer=No

IF Age = Young
AND

IF Student = Yes
THEN

Will_Buy_Computer=Yes

IF Age = Middle Age
THEN

Will_Buy_Computer=Yes

IF Age = Older Adult
AND

IF Credit_Score = Excellent
THEN

Will_Buy_Computer=Yes

IF Age = Older Adult
AND

IF Credit_Score = Regular
THEN

Will_Buy_Computer=No

Bruno Castro da Silva 27

Student?

Age?

Credit_Score?Yes

Yes

Young Middle Age Older Adult

No

No Yes

Yes

Regular Excellent

No

Decision trees encode classification rules via (implicit) IF-ELSE statements

Decision Trees

IF Age = Young
AND

IF Student = No
THEN

Will_Buy_Computer=No

IF Age = Young
AND

IF Student = Yes
THEN

Will_Buy_Computer=Yes

IF Age = Middle Age
THEN

Will_Buy_Computer=Yes

IF Age = Older Adult
AND

IF Credit_Score = Excellent
THEN

Will_Buy_Computer=Yes

IF Age = Older Adult
AND

IF Credit_Score = Regular
THEN

Will_Buy_Computer=No

How to construct a decision tree
based on training data?

Bruno Castro da Silva 28

Decision Trees

● General idea
○ Repeat “until classifier is good enough"

■ Select the “best” attribute
■ Split the instances based on the value of this attribute (new decision rule)

Age<0.43?

Income<0.47? Income<0.43?

Divide-and-Conquer Strategy

29Bruno Castro da Silva

Divide-and-Conquer over data instances

id Student Age Credit_Score Will_Buy_Computer

x1 Yes Young Regular Yes

x2 Yes Middle Age Excellent Yes

x3 No Young Excellent No

x4 No Older Adult Regular No

x5 Yes Older Adult Excellent Yes

Decision Trees

30Bruno Castro da Silva

Divide-and-Conquer over data instances

id Student Age Credit_Score Will_Buy_Computer

x1 Yes Young Regular Yes

x2 Yes Middle Age Excellent Yes

x3 No Young Excellent No

x4 No Older Adult Regular No

x5 Yes Older Adult Excellent Yes

Age?

Young

Middle Age

Older Adult

id Student Age Credit_Score
Will_Buy C

omputer

x1 Yes Young Regular Yes

x3 No Young Excellent Yes

id Student Age Credit_Score
Will_Buy C

omputer

x4 No Older Adult Regular No

x5 Yes Older Adult Excellent Yes

id Student Age Credit_Score
Will_Buy C

omputer
x2 Yes Middle Age Excellent Yes

Decision Trees

31Bruno Castro da Silva

Which attribute to test to determine a driver's label/class?

Name Age Gender TrafficTicket Class:  High-Risk
Driver

John 43 M Yes High Risk
Peter 18 M No Low Risk
Anna 35 F No Low Risk
Paula 19 F No Low Risk
Mark 90 M Yes High Risk
Marisa 19 F Yes High Risk
Bob 30 M No Low Risk

• How to train a decision tree that correctly classifies these examples?

Learning a Decision Tree

32Bruno Castro da Silva

TrafficTicket

Low
Risk

High
Risk

T F

Name Age Gender TrafficTicket Class:  High-Risk
Driver

John 43 M Yes High Risk
Peter 18 M No Low Risk
Anna 35 F No Low Risk
Paula 19 F No Low Risk
Mark 90 M Yes High Risk
Marisa 19 F Yes High Risk
Bob 30 M No Low Risk

• How to train a decision tree that correctly classifies these examples?

Learning a Decision Tree

Which attribute to test to determine a driver's label/class?

33Bruno Castro da Silva

Name Age Gender TrafficTicket Class:  High-Risk
Driver

John 43 M Yes High Risk
Peter 18 M No Low Risk
Anna 35 F No Low Risk
Paula 19 F No Low Risk
Mark 90 M Yes High Risk
Marisa 19 F Yes High Risk
Bob 30 M No Low Risk

• How to train a decision tree that correctly classifies these examples?

Learning a Decision Tree

But what if the training set is not so “well behaved”?

34Bruno Castro da Silva

Name Age Gender TrafficTicket Class:  High-Risk
Driver

John 43 M Yes High Risk
Peter 18 M No High Risk
Anna 35 F No Low Risk
Paula 19 F No High Risk
Mark 90 M Yes High Risk
Marisa 19 F Yes High Risk
Bob 30 M No Low Risk

• How to train a decision tree that correctly classifies these examples?

Learning a Decision Tree

But what if the training set is not so “well behaved”?

35Bruno Castro da Silva

Name Age Gender TrafficTicket Class:  High-Risk
Driver

John 43 M Yes High Risk
Peter 18 M No High Risk
Anna 35 F No Low Risk
Paula 19 F No High Risk
Mark 90 M Yes High Risk
Marisa 19 F Yes High Risk
Bob 30 M No Low Risk

TrafficTicket

T F

• How to train a decision tree that correctly classifies these examples?

High
Risk

Learning a Decision Tree

But what if the training set is not so “well behaved”?

36Bruno Castro da Silva

Name Age Gender TrafficTicket Class:  High-Risk
Driver

John 43 M Yes High Risk
Peter 18 M No High Risk
Anna 35 F No Low Risk
Paula 19 F No High Risk
Mark 90 M Yes High Risk
Marisa 19 F Yes High Risk
Bob 30 M No Low Risk

TrafficTicket

T F

• How to train a decision tree that correctly classifies these examples?

High
Risk

Learning a Decision Tree

But what if the training set is not so “well behaved”?

37Bruno Castro da Silva

TrafficTicket

T F

Age<20

T F

Name Age Gender TrafficTicket Class:  High-Risk
Driver

John 43 M Yes High Risk
Peter 18 M No High Risk
Anna 35 F No Low Risk
Paula 19 F No High Risk
Mark 90 M Yes High Risk
Marisa 19 F Yes High Risk
Bob 30 M No Low Risk

• How to train a decision tree that correctly classifies these examples?

High
Risk

Low
Risk

High
Risk

Learning a Decision Tree

But what if the training set is not so “well behaved”?

38Bruno Castro da Silva

How to determine which attributes to test at each step along the tree?

TrafficTicket

T F

Age<20

T F

Name Age Gender TrafficTicket Class:  High-Risk
Driver

John 43 M Yes High Risk
Peter 18 M No High Risk
Anna 35 F No Low Risk
Paula 19 F No High Risk
Mark 90 M Yes High Risk
Marisa 19 F Yes High Risk
Bob 30 M No Low Risk

• How to train a decision tree that correctly classifies these examples?

High
Risk

Low
Risk

High
Risk

Learning a Decision Tree

39Bruno Castro da Silva

TrafficTicket

T F

Name Age Gender TrafficTicket Class:  High-Risk
Driver

John 43 M Yes High Risk
Peter 18 M No High Risk
Anna 35 F No Low Risk
Paula 19 F No High Risk
Mark 90 M Yes High Risk
Marisa 19 F Yes High Risk
Bob 30 M No Low Risk

Learning a Decision Tree

{John=H, Peter=H, Paula=H, Mark=H, Marisa=H,
Anna=L, Bob=L}

• General procedure to create a decision tree

1. Select an attribute to add to the tree (starting from the root) → new node

2. Add, to this node, one branch for each possible value of the selected attribute

3. Partition the instances/examples — assign each instance to its corresponding branch,
 based on the value of that instance’s attribute

4. Repeat these steps, recursively, for each resulting partition (i.e., for each children node)

40Bruno Castro da Silva

TrafficTicket

T F

Name Age Gender TrafficTicket Class:  High-Risk
Driver

John 43 M Yes High Risk
Peter 18 M No High Risk
Anna 35 F No Low Risk
Paula 19 F No High Risk
Mark 90 M Yes High Risk
Marisa 19 F Yes High Risk
Bob 30 M No Low Risk

Learning a Decision Tree

{John=H, Peter=H, Paula=H, Mark=H, Marisa=H,
Anna=L, Bob=L}

{John=H, Mark=H,
Marisa=H}

{Peter=H, Paula=H,
Anna=L, Bob=L}

• General procedure to create a decision tree

1. Select an attribute to add to the tree (starting from the root) → new node

2. Add, to this node, one branch for each possible value of the selected attribute

3. Partition the instances/examples — assign each instance to its corresponding branch,
 based on the value of that instance’s attribute

4. Repeat these steps, recursively, for each resulting partition (i.e., for each children node)

41Bruno Castro da Silva

TrafficTicket

T F

Age<20

Name Age Gender TrafficTicket Class:  High-Risk
Driver

John 43 M Yes High Risk
Peter 18 M No High Risk
Anna 35 F No Low Risk
Paula 19 F No High Risk
Mark 90 M Yes High Risk
Marisa 19 F Yes High Risk
Bob 30 M No Low Risk

Learning a Decision Tree

High
Risk

{John=H, Peter=H, Paula=H, Mark=H, Marisa=H,
Anna=L, Bob=L}

{John=H, Mark=H,
Marisa=H}

{Peter=H, Paula=H,
Anna=L, Bob=L}

• General procedure to create a decision tree

1. Select an attribute to add to the tree (starting from the root) → new node

2. Add, to this node, one branch for each possible value of the selected attribute

3. Partition the instances/examples — assign each instance to its corresponding branch,
 based on the value of that instance’s attribute

4. Repeat these steps, recursively, for each resulting partition (i.e., for each children node)

42Bruno Castro da Silva

TrafficTicket

T F

Age<20

T F

Name Age Gender TrafficTicket Class:  High-Risk
Driver

John 43 M Yes High Risk
Peter 18 M No High Risk
Anna 35 F No Low Risk
Paula 19 F No High Risk
Mark 90 M Yes High Risk
Marisa 19 F Yes High Risk
Bob 30 M No Low Risk

Learning a Decision Tree

High
Risk

Low
Risk

High
Risk

{Peter=H, Paula=H} {Anna=L, Bob=L}

{John=H, Peter=H, Paula=H, Mark=H, Marisa=H,
Anna=L, Bob=L}

{John=H, Mark=H,
Marisa=H}

{Peter=H, Paula=H,
Anna=L, Bob=L}

• General procedure to create a decision tree

1. Select an attribute to add to the tree (starting from the root) → new node

2. Add, to this node, one branch for each possible value of the selected attribute

3. Partition the instances/examples — assign each instance to its corresponding branch,
 based on the value of that instance’s attribute

4. Repeat these steps, recursively, for each resulting partition (i.e., for each children node)

43Bruno Castro da Silva

Learning a Decision Tree
• General procedure to create a decision tree

1. Select an attribute to add to the tree (starting from the root) → new node

2. Add, to this node, one branch for each possible value of the selected attribute

3. Partition the instances/examples — assign each instance to its corresponding branch,
 based on the value of that instance’s attribute

4. Repeat these steps, recursively, for each resulting partition (i.e., for each children node)

When to stop?

a. When all instances of a given partition/node belong to the same class

Then, create a leaf node labeled with that class

b. When there are no more attributes that can be tested

or
When a partition is empty (i.e., there are no instances associated with it)
Then, create a leaf node labeled with the majority class among the instances

44Bruno Castro da Silva

Learning a Decision Tree
• General procedure to create a decision tree

1. Select an attribute to add to the tree (starting from the root) → new node

2. Add, to this node, one branch for each possible value of the selected attribute

3. Partition the instances/examples — assign each instance to its corresponding branch,
 based on the value of that instance’s attribute

4. Repeat these steps, recursively, for each resulting partition (i.e., for each children node)

When to stop?

a. When all instances of a given partition/node belong to the same class

Then, create a leaf node labeled with that class

b. When there are no more attributes that can be tested

or
When a partition is empty (i.e., there are no instances associated with it)
Then, create a leaf node labeled with the majority class among the instances

?
Select an attribute

45Bruno Castro da Silva

Selecting an Attribute to Test

Good_Credit_Score

Yes No

yes
yes
yes
yes
no

4 yes
1 no

no
no
no
no

Has_a_Job

Yes No

yes
yes
no
no

yes
yes
no
no
no

“Good_Credit_Score?” seems to be more informative than “Has_a_Job”

0 yes
4 no

2 yes
2 no

2 yes
3 no

• Criterion/heuristic for selecting which attribute to test

• Most informative attribute

• attribute that best splits instances according to their classes

• Ideally, we should select an attribute such that
• “all instances of class A go to one branch, all instances of class B to the other branch”

• i.e., attribute that results in partitions whose instances are as homogenous as possible

• all instances in that partition belong to the same class (in that case, add new leaf node)

46Bruno Castro da Silva

Selecting an Attribute to Test

Good_Credit_Score

Yes No

yes
yes
yes
yes
no

4 yes
1 no

no
no
no
no

Has_a_Job

Yes No

yes
yes
no
no

yes
yes
no
no
no

“Good_Credit_Score?” seems to be more informative than “Has_a_Job”

0 yes
4 no

2 yes
2 no

2 yes
3 no

"Goodness of Split"

• Criterion/heuristic for selecting which attribute to test

• Most informative attribute

• attribute that best splits instances according to their classes

• Ideally, we should select an attribute such that
• “all instances of class A go to one branch, all instances of class B to the other branch”

• i.e., attribute that results in partitions whose instances are as homogenous as possible

• all instances in that partition belong to the same class (in that case, add new leaf node)

47Bruno Castro da Silva

Low Medium High

Selecting an Attribute to Test

• How to quantify how homogenous a set of instances is?

• Information, or entropy

• Information is measured in bits (or fractions of a bit)

Will repay loan

Will not repay loan

Let’s suppose we test Age, and the instances associated with Age=Young look like this

Was that a useful attribute to test?
Do we have a good idea about whether

the person is going to repay the loan or not?

• Ideally, we should select an attribute such that
• “all instances of class A go to one branch, all instances of class B to the other branch”

• i.e., attribute that results in partitions whose instances are as homogenous as possible

48Bruno Castro da Silva

Low Medium High

Selecting an Attribute to Test

• How to quantify how homogenous a set of instances is?

• Information, or entropy

• Information is measured in bits (or fractions of a bit)

Will repay loan

Will not repay loan

Let’s suppose we test Age, and the instances associated with Age=Young look like this

Was that a useful attribute to test?
Do we have a good idea about whether

the person is going to repay the loan or not?

• Ideally, we should select an attribute such that
• “all instances of class A go to one branch, all instances of class B to the other branch”

• i.e., attribute that results in partitions whose instances are as homogenous as possible

49Bruno Castro da Silva

Low Medium High

• How to quantify how homogenous a set of instances is?

• Information, or entropy

• Information is measured in bits (or fractions of a bit)

Will repay loan

Will not repay loan

Let’s suppose we test Age, and the instances associated with Age=Young look like this

Was that a useful attribute to test?
Do we have a good idea about whether

the person is going to repay the loan or not?

Selecting an Attribute to Test

• Ideally, we should select an attribute such that
• “all instances of class A go to one branch, all instances of class B to the other branch”

• i.e., attribute that results in partitions whose instances are as homogenous as possible

50Bruno Castro da Silva

Selecting an Attribute to Test

• How to quantify how homogenous a set of instances is?

• Information, or entropy

• Information is measured in bits (or fractions of a bit)

Will repay loan

Will not repay loan

Let’s suppose we test Age, and the instances associated with Age=Young look like this

Low Medium High

ENTROPY

• Ideally, we should select an attribute such that
• “all instances of class A go to one branch, all instances of class B to the other branch”

• i.e., attribute that results in partitions whose instances are as homogenous as possible

51Bruno Castro da Silva

Selecting an Attribute to Test

• How to quantify how homogenous a set of instances is?

• Information, or entropy

• Information is measured in bits (or fractions of a bit)

○ Intuitively, quantifies how random a given quantity (e.g., class) is within a dataset
○ Associated with how hard it is to predict the class based on an attribute

○ Higher entropy
 → instances of a same class are all mixed up
 → testing the attribute that resulted in that partition of the data was not very useful

Will repay loan

Will not repay loan

Low Medium High

ENTROPY

52Bruno Castro da Silva

Selecting an Attribute to Test

• How to quantify how homogenous a set of instances is?

• Information, or entropy

• Information is measured in bits (or fractions of a bit)

• Given a distribution of labels/classes in a partition of the data

• how much information is required to predict the class

• this is the entropy of that distribution

{John=H, Peter=H, Paula=H, Mark=H, Marisa=H,
Anna=L, Bob=L}

53Bruno Castro da Silva

Selecting an Attribute to Test

• How to quantify how homogenous a set of instances is?

• Information, or entropy

• Information is measured in bits (or fractions of a bit)

• Given a distribution of labels/classes in a partition of the data

• how much information is required to predict the class

• this is the entropy of that distribution

Probability that class #1 (H)
appears in the partition of the data

{John=H, Peter=H, Paula=H, Mark=H, Marisa=H,
Anna=L, Bob=L}

54Bruno Castro da Silva

Selecting an Attribute to Test

• How to quantify how homogenous a set of instances is?

• Information, or entropy

• Information is measured in bits (or fractions of a bit)

• Given a distribution of labels/classes in a partition of the data

• how much information is required to predict the class

• this is the entropy of that distribution

Probability that class #2 (L)
appears in the partition of the data

{John=H, Peter=H, Paula=H, Mark=H, Marisa=H,
Anna=L, Bob=L}

55Bruno Castro da Silva

Selecting an Attribute to Test

• How to quantify how homogenous a set of instances is?

• Information, or entropy

• Information is measured in bits (or fractions of a bit)

• Given a distribution of labels/classes in a partition of the data

• how much information is required to predict the class

• this is the entropy of that distribution

{John=H, Peter=H,
Anna=L, Bob=L}

High entropy because the class

is completely undetermined

(50% instances are H, 50% instances are L)

I(2/4, 2/4) = -2/4 log2(2/4) -2/4 log2(2/4)
 = 1

Pr(H) = 2/4
Pr(L) = 2/4

56Bruno Castro da Silva

Selecting an Attribute to Test

• How to quantify how homogenous a set of instances is?

• Information, or entropy

• Information is measured in bits (or fractions of a bit)

• Given a distribution of labels/classes in a partition of the data

• how much information is required to predict the class

• this is the entropy of that distribution Low entropy because the class

is completely determined

(100% instances are H!)

Pr(H) = 2/2
Pr(L) = 0/2

{John=H, Peter=H} I(2/2, 0/2) = -2/2 log2(2/2) -0/2 log2(0/2)
 = 0

57Bruno Castro da Silva

Selecting an Attribute to Test

• How to quantify how homogenous a set of instances is?

• Information, or entropy

• Information is measured in bits (or fractions of a bit)

• Given a distribution of labels/classes in a partition of the data

• how much information is required to predict the class

• this is the entropy of that distribution
“Medium" entropy because the class

is almost determined

(almost sure it is H, but there’s still

some uncertainty)

Pr(A) = 5/7
Pr(B) = 2/7

I(5/7, 2/7) = -5/7 log2(5/7) -2/7 log2(2/7)
 = 0.8631

{John=A, Peter=A, Paula=A, Mark=A, Marisa=A,
Anna=B, Bob=B}

58Bruno Castro da Silva

• Decision tree to predict whether a person will play tennis

• Which attribute to test first?

• Let’s consider testing Weather

Original dataset: 9 instances “Yes"
 5 instances "No"

yes yes yes yes yes yes yes yes yes
no no no no no

Weather

yes
yes
no
no
no

yes
yes
yes
yes

yes
yes
yes
no
no

Sunny

Overcast

Rainy

Selecting an Attribute to Test

59Bruno Castro da Silva

• Entropy of the original dataset:

• I(9/14, 5/14) = -9/14 log2(9/14) -5/14 log2(5/14)
 = 0.940 bits

• Entropy of partitions resulting from testing Weather:
• Weather=Sunny

• I(2/5, 3/5) = -2/5 log2(2/5) -3/5 log2(3/5)
 = 0.971 bits

• Weather=Overcast

• I(4/4, 0/4) = -4/4 log2(4/4) -0/4 log2(0/4)
 = 0 bits

• Weather=Rainy

• I(3/5, 2/5) = -3/5 log2(3/5) -2/5 log2(2/5)
 = 0.971 bits

• Average entropy of the resulting partitions

• (5/14)x0.971 + (4/14)x0 + (5/14)x0.971 = 0.693 bits

Selecting an Attribute to Test

• Decision tree to predict whether a person will play tennis

• Which attribute to test first?

• Let’s consider testing Weather

Original dataset: 9 instances “Yes"
 5 instances "No"

yes yes yes yes yes yes yes yes yes
no no no no no

Weather

yes
yes
no
no
no

yes
yes
yes
yes

yes
yes
yes
no
no

Sunny

Overcast

Rainy

60Bruno Castro da Silva

• Entropy of the original dataset:

• I(9/14, 5/14) = -9/14 log2(9/14) -5/14 log2(5/14)
 = 0.940 bits

• Entropy of partitions resulting from testing Weather:
• Weather=Sunny

• I(2/5, 3/5) = -2/5 log2(2/5) -3/5 log2(3/5)
 = 0.971 bits

• Weather=Overcast

• I(4/4, 0/4) = -4/4 log2(4/4) -0/4 log2(0/4)
 = 0 bits

• Weather=Rainy

• I(3/5, 2/5) = -3/5 log2(3/5) -2/5 log2(2/5)
 = 0.971 bits

• Average entropy of the resulting partitions

• (5/14)x0.971 + (4/14)x0 + (5/14)x0.971 = 0.693 bits

Selecting an Attribute to Test

• Decision tree to predict whether a person will play tennis

By testing the attribute Weather,
the entropy of the classes decreased by
0.940 - 0.693 = 0.247 bits

The algorithm will test,
first, the attributes that

result in higher information gain

Information Gain
• quantifies how much information

about the class is obtained
by testing a given attribute

61Bruno Castro da Silva

Selecting an Attribute to Test
Information Gain

• quantifies how much information
about the class is obtained
by testing a given attribute

The algorithm will test,
first, the attributes that

result in higher information gain

Weather

yes
yes
no
no
no

yes
yes
yes
yes

yes
yes
yes
no
no

Sunny

Overcast

Rainy

Temperature

yes
yes
no
no

yes
yes
yes
yes
no
no

yes
yes
yes
no

Hot
Mild

Cool

Humidity

yes
yes
yes
no
no
no
no

yes
yes
yes
yes
yes
yes
no

High Normal

Windy

yes
yes
yes
yes
yes
yes
no
no

yes
yes
yes
no
no
no

False True

Gain: 0.247 bits Gain: 0.029 bits

Gain: 0.152 bits
Gain: 0.048 bits

62Bruno Castro da Silva

Weather

yes
yes
no
no
no

yes
yes
yes
yes

yes
yes
yes
no
no

Sunny

Overcast

Rainy

Selecting an Attribute to Test

Weatheryes yes
no no no Sunny

Overcast

Rainy

Temperature

no
no

yes
no

yes

Hot
Mild

Cool

Gain: 0.571 bits

Weatheryes yes
no no no Sunny

Overcast

Rainy

Windy

yes
no
no

yes
no

False True

Gain: 0.020 bits

Weatheryes yes
no no no Sunny

Overcast

Rainy

Humidity

no
no
no

yes
yes

High Normal

Gain: 0.971 bits

• We have decided that the 1st attribute to test is Weather

• What should be tested next, on the Sunny branch?

• i.e., should we test Temperature, Windy, or Humidity?

63Bruno Castro da Silva

• We have decided that the 1st attribute to test is Weather

• What should be tested next, on the Sunny branch?

• i.e., should we test Temperature, Windy, or Humidity?

Weather

yes
yes
no
no
no

yes
yes
yes
yes

yes
yes
yes
no
no

Sunny

Overcast

Rainy

Selecting an Attribute to Test

Weatheryes yes
no no no Sunny

Overcast

Rainy

Temperature

no
no

yes
no

yes

Hot
Mild

Cool

Gain: 0.571 bits

Weatheryes yes
no no no Sunny

Overcast

Rainy

Windy

yes
no
no

yes
no

False True

Gain: 0.020 bits

Weatheryes yes
no no no Sunny

Overcast

Rainy

Humidity

no
no
no

yes
yes

High Normal

Gain: 0.971 bits
64Bruno Castro da Silva

Selecting an Attribute to Test

Weather
Sunny

Overcast

Rainy

Humidity

no
no
no

yes
yes

High Normal

65Bruno Castro da Silva

Selecting an Attribute to Test

Weather
Sunny

Overcast

Rainy

Humidity

High Normal

No Yes

66Bruno Castro da Silva

Selecting an Attribute to Test

Weather
Sunny

Overcast

Rainy

Humidity

High Normal

No Yes

• What should be tested next, on the Overcast branch?

• i.e., should we test Temperature, Windy, or Humidity?

Repeat the same process, recursively…

67Bruno Castro da Silva

Learned Decision Tree

Sunny
Weather

Overcast
Rainy

Humidity

High Normal

Windy

False True

no
no
no

yes
yes

yes
yes
yes
yes

yes
yes
yes

no
no

No Yes

Yes

Yes No

Where is “Temperature"

being tested?

68Bruno Castro da Silva

69Bruno Castro da Silva

Weather

yes
yes
no
no
no

yes
yes
yes
yes

yes
yes
yes
no
no

Sunny

Overcast

Rainy

Review: Selecting an Attribute to Test

70Bruno Castro da Silva

• We have decided that the 1st attribute to test is Weather

• What should be tested next, on the Sunny branch?

• i.e., should we test Temperature, Windy, or Humidity?

Weather

yes
yes
no
no
no

yes
yes
yes
yes

yes
yes
yes
no
no

Sunny

Overcast

Rainy

Weatheryes yes
no no no Sunny

Overcast

Rainy

Temperature

no
no

yes
no

yes

Hot
Mild

Cool

Gain: 0.571 bits

Weatheryes yes
no no no Sunny

Overcast

Rainy

Windy

yes
no
no

yes
no

False True

Gain: 0.020 bits

Weatheryes yes
no no no Sunny

Overcast

Rainy

Humidity

no
no
no

yes
yes

High Normal

Gain: 0.971 bits

Review: Selecting an Attribute to Test

71Bruno Castro da Silva

Weather
Sunny

Overcast

Rainy

Humidity

no
no
no

yes
yes

High Normal

Review: Selecting an Attribute to Test

72Bruno Castro da Silva

Weather
Sunny

Overcast

Rainy

Humidity

High Normal

No Yes

Review: Selecting an Attribute to Test

73Bruno Castro da Silva

Weather
Sunny

Overcast

Rainy

Humidity

High Normal

No Yes

• What should be tested next, on the Overcast branch?

• i.e., should we test Temperature, Windy, or Humidity?

Repeat the same process, recursively…

Review: Selecting an Attribute to Test

74Bruno Castro da Silva

Review: Learned Decision Tree

Sunny
Weather

Overcast
Rainy

Humidity

High Normal

Windy

False True

no
no
no

yes
yes

yes
yes
yes
yes

yes
yes
yes

no
no

No Yes

Yes

Yes No

Bruno Castro da Silva

Criteria for Selecting an Attribute to Test

• We have discussed one possible criterion for selecting which attribute to test

• Information Gain

• Many other criteria have been proposed — each with different properties

• Intuitively:

• A split that keeps the same proportion of classes in each partition is useless
• A split where the instances in each partition have the same class is useful!

• Main criteria for selecting which attribute to test:

• Information Gain - ID3 Algorithm (Quilan, 1987)

• Information Gain Ratio - C4.5 Algorithm (Quilan, 1988)

• Gini Impurity - CART Algorithm (Breiman, 1984)

75

• Main criteria for selecting which attribute to test:

• Information Gain - ID3 Algorithm (Quilan, 1987)

• Information Gain Ratio - C4.5 Algorithm (Quilan, 1988)

• Gini Impurity - CART Algorithm (Breiman, 1984)

Bruno Castro da Silva

Criteria for Selecting an Attribute to Test

All algorithms are based on the same underlying tree-learning strategy
Differ with respect to the criterion used to select which attribute to test at each point

All are greedy algorithms: select the best attribute to use when splitting a node,
and never revisit this decision (no backtracking)

• We have discussed one possible criterion for selecting which attribute to test

• Information Gain

• Many other criteria have been proposed — each with different properties

• Intuitively:

• A split that keeps the same proportion of classes in each partition is useless
• A split where the instances in each partition have the same class is useful!

76

77Bruno Castro da Silva

• Main criteria for selecting which attribute to test:

• Information Gain - ID3 Algorithm (Quilan, 1987)

• Information Gain Ratio - C4.5 Algorithm (Quilan, 1988)

• Gini Impurity - CART Algorithm (Breiman, 1984)

A Decision Tree Learning algorithm

•Create a new node, 𝑁

Function: decision_tree(𝐷, 𝐿)

•Let 𝐴 be the best attribute to split the dataset 𝐷 // Select splitting attribute according to some criterion

•Define node 𝑁 as a decision node that tests attribute 𝐴

Input: A dataset 𝐷 = {(𝑥!, 𝑦!), (𝑥", 𝑦"), … , (𝑥#, 𝑦#)} with 𝑛 training instances
 A list, 𝐿, of attributes that can still be tested

• If all instances in 𝐷 belong to the same class, 𝑦
 Define node 𝑁 as a leaf node labeled with 𝑦 and return it
• If there are no more attributes that can be tested (i.e., if 𝐿 = ∅)
 Define node 𝑁 as a leaf node labeled with the majority class in 𝐷, and return it

// stopping
// criteria

78Bruno Castro da Silva

A Decision Tree Learning algorithm

•Create a new node, 𝑁

Function: decision_tree(𝐷, 𝐿)

•Let 𝐴 be the best attribute to split the dataset 𝐷 // Select splitting attribute according to some criterion

•Define node 𝑁 as a decision node that tests attribute 𝐴
•Remove 𝐴 from the list of attributes that can still be tested: 𝐿: = 𝐿 − {𝐴}

•Let 𝑉 be a list with all different values of attribute 𝐴 considering the instances in dataset 𝐷
•For each attribute value 𝑣 ∈ 𝑉:

•Let 𝐷! be the partition of 𝐷 containing all instances whose attribute 𝐴 = 𝑣
• If 𝐷! is empty
 Let 𝑇! be a leaf node labeled with the majority class in 𝐷
•Else

Let 𝑇! be a sub-tree responsible for classifying the instances in 𝐷!: 𝑇!: =decision_tree(𝐷!, 𝐿)
•Create an edge from node 𝑁 to the root of 𝑇! , where the edge is labeled with attribute value 𝑣

•Return 𝑁

Input: A dataset 𝐷 = {(𝑥!, 𝑦!), (𝑥", 𝑦"), … , (𝑥#, 𝑦#)} with 𝑛 training instances
 A list, 𝐿, of attributes that can still be tested

• If all instances in 𝐷 belong to the same class, 𝑦
 Define node 𝑁 as a leaf node labeled with 𝑦 and return it
• If there are no more attributes that can be tested (i.e., if 𝐿 = ∅)
 Define node 𝑁 as a leaf node labeled with the majority class in 𝐷, and return it

// stopping
// criteria

// creates
// sub-trees

Bruno Castro da Silva

Criteria for Selecting an Attribute to Test

• We have discussed one possible criterion for selecting which attribute to test

• Information Gain

• Many other criteria have been proposed — each with different properties

• Intuitively:

• A split that keeps the same proportion of classes in each partition is useless
• A split where the instances in each partition have the same class is useful!

• Main criteria for selecting which attribute to test:

• Information Gain - ID3 Algorithm (Quilan, 1987)

• Information Gain Ratio - C4.5 Algorithm (Quilan, 1988)

• Gini Impurity - CART Algorithm (Breiman, 1984)

79

Information Gain

Formally:

• Let 𝑝" be the probability that the label 𝑖 occurs in instances in a dataset 𝐷

• Let 𝐼(𝐷) = − ∑
"#$

%
𝑝"log&(𝑝") be the entropy of an arbitrary dataset 𝐷, where 𝑚 is the number of classes/labels

• Assume that the attribute 𝐴 can take up 𝑣 values

(that is, if we split 𝐷 based on attribute 𝐴, we will end up with 𝑣 partitions)

• Let Info'(𝐷) = ∑
(#$

! |*!|
|*|

𝐼(𝐷() be the average entropy of the partitions resulting from splitting 𝐷 based on 𝐴

• Let Gain'(𝐷) = 𝐼(𝐷) − Info'(𝐷) be the Information Gain resulting from splitting based on attribute 𝐴

• At each step, the algorithm splits the instances based on the attribute 𝐴 with highest Information Gain

Bruno Castro da Silva

• This is the criterion discussed earlier → results in a method known as ID3

• Intuitively, it selects the attribute 𝐴 that maximizes the difference between:

• The entropy of the original dataset 𝐷 (before splitting it based on 𝐴)

• The average entropy of the resulting partitions if we split dataset 𝐷 based on 𝐴

80

Information Gain

Bruno Castro da Silva

• Often results in a decision tree that is not necessarily the “simplest” one

• Intuitively, it often chooses attributes with many possible values (like Student_ID, Name, etc)

Student_ID Student Age Credit_Score Will_Buy_Computer

id_1 Yes Young Regular Yes

id_2 Yes Middle Age Excellent No

id_3 No Young Excellent No

id_4 No Older Adult Regular Yes

Student_ID?

id_1 id_4id_2 id_3

Ye
s

Ye
sNoNo

• Perfect split!

• With just one test, can “predict" the class perfectly

• But it is clearly overfitting (“memorizing" the dataset)

• This is the criterion discussed earlier → results in a method known as ID3

• Intuitively, it selects the attribute 𝐴 that maximizes the difference between:

• The entropy of the original dataset 𝐷 (before splitting it based on 𝐴)

• The average entropy of the resulting partitions if we split dataset 𝐷 based on 𝐴

81

Information Gain

82

• Often results in a decision tree that is not necessarily the “simplest” one

• Intuitively, it often chooses attributes with many possible values (like Student_ID, Name, etc)

Student_ID Student Age Credit_Score Will_Buy_Computer

id_1 Yes Young Regular Yes

id_2 Yes Middle Age Excellent No

id_3 No Young Excellent No

id_4 No Older Adult Regular Yes

Student_ID?

id_1 id_4id_2 id_3

Ye
s

Ye
sNoNo

• Perfect split!

• With just one test, can “predict" the class perfectly

• But it is clearly overfitting (“memorizing" the dataset)

The Information Gain Ratio criterion, implemented
by the C4.5 algorithm, tries to mitigate this issue

• This is the criterion discussed earlier → results in a method known as ID3

• Intuitively, it selects the attribute 𝐴 that maximizes the difference between:

• The entropy of the original dataset 𝐷 (before splitting it based on 𝐴)

• The average entropy of the resulting partitions if we split dataset 𝐷 based on 𝐴

82Bruno Castro da Silva

Bruno Castro da Silva

Criteria for Selecting an Attribute to Test

• We have discussed one possible criterion for selecting which attribute to test

• Information Gain

• Many other criteria have been proposed — each with different properties

• Intuitively:

• A split that keeps the same proportion of classes in each partition is useless
• A split where the instances in each partition have the same class is useful!

• Main criteria for selecting which attribute to test:

• Information Gain - ID3 Algorithm (Quilan, 1987)

• Information Gain Ratio - C4.5 Algorithm (Quilan, 1988)

• Gini Impurity - CART Algorithm (Breiman, 1984)

83

Information Gain Ratio

Bruno Castro da Silva

Name Age Gender TrafficTicket Class:  High-Risk
Driver

John 43 M Yes High Risk
Peter 18 M No Low Risk
Anna 35 F No Low Risk
Paula 19 F No Low Risk
Mark 90 M Yes High Risk
Marisa 19 F Yes Low Risk
Bob 30 M No Low Risk

• “Adjusts" Information Gain criterion to lessen the bias towards attributes that create many branches

TrafficTicket

Yes No

{John,
Mark,

Marisa}

{Peter,
Anna,
Paula,
Bob}

|𝐷"| = 3 |𝐷#| = 4

𝑃𝑟(𝐷$) =
3
7 𝑃𝑟(𝐷&) =

4
7

• Intuition:

Name

{John}
{Peter
}

{Anna
}

{Paula
}

{Mark
}

{Maris
a}

{Bob}

|𝐷!| = 1

𝑃𝑟(𝐷!) =
1
7

|𝐷"| = 1

𝑃𝑟(𝐷") =
1
7

|𝐷#| = 1

𝑃𝑟(𝐷#) =
1
7

|𝐷$| = 1

𝑃𝑟(𝐷$) =
1
7

|𝐷%| = 1

𝑃𝑟(𝐷%) =
1
7

|𝐷&| = 1

𝑃𝑟(𝐷&) =
1
7

|𝐷'| = 1

𝑃𝑟(𝐷') =
1
7

John

Pete
r

An
na

Pa
ul
a

Bob

Marisa

M
ark

84

Information Gain Ratio

Bruno Castro da Silva

• “Adjusts" Information Gain criterion to lessen the bias towards attributes that create many branches

TrafficTicket

Yes No

{John,
Mark,

Marisa}

{Peter,
Anna,
Paula,
Bob}

|𝐷"| = 3 |𝐷#| = 4

𝑃𝑟(𝐷$) =
3
7 𝑃𝑟(𝐷&) =

4
7

Name

{John}
{Peter
}

{Anna
}

{Paula
}

{Mark
}

{Maris
a}

{Bob}

John

Pete
r

An
na

Pa
ul
a

Bob

Marisa

M
ark

|𝐷!| = 1

𝑃𝑟(𝐷!) =
1
7

|𝐷"| = 1

𝑃𝑟(𝐷") =
1
7

|𝐷#| = 1

𝑃𝑟(𝐷#) =
1
7

|𝐷$| = 1

𝑃𝑟(𝐷$) =
1
7

|𝐷%| = 1

𝑃𝑟(𝐷%) =
1
7

|𝐷&| = 1

𝑃𝑟(𝐷&) =
1
7

|𝐷'| = 1

𝑃𝑟(𝐷') =
1
7

• Intuition:

• If there are lots of branches (e.g., if we split by Name, there are as many branches as attribute values!)

• Then these probabilities will be very similar/homogenous

• How to quantify how “homogeneous" these quantities are?

• We’ve seen something like this before… Entropy!

85

Information Gain Ratio

TrafficTicket

Yes No

{John,
Mark,

Marisa}

{Peter,
Anna,
Paula,
Bob}

|𝐷"| = 3 |𝐷#| = 4

𝑃𝑟(𝐷$) =
3
7 𝑃𝑟(𝐷&) =

4
7

Name

{John}
{Peter
}

{Anna
}

{Paula
}

{Mark
}

{Maris
a}

{Bob}

John

Pete
r

An
na

Pa
ul
a

Bob

Marisa

M
ark

|𝐷!| = 1

𝑃𝑟(𝐷!) =
1
7

|𝐷"| = 1

𝑃𝑟(𝐷") =
1
7

|𝐷#| = 1

𝑃𝑟(𝐷#) =
1
7

|𝐷$| = 1

𝑃𝑟(𝐷$) =
1
7

|𝐷%| = 1

𝑃𝑟(𝐷%) =
1
7

|𝐷&| = 1

𝑃𝑟(𝐷&) =
1
7

|𝐷'| = 1

𝑃𝑟(𝐷') =
1
7

−
3
7 log"

3
7 −

4
7 log"

4
7

• How to quantify how “homogeneous" these quantities are?

• We’ve seen something like this before… Entropy!

86Bruno Castro da Silva

Information Gain Ratio

TrafficTicket

Yes No

{John,
Mark,

Marisa}

{Peter,
Anna,
Paula,
Bob}

|𝐷"| = 3 |𝐷#| = 4

𝑃𝑟(𝐷$) =
3
7 𝑃𝑟(𝐷&) =

4
7

Name

{John}
{Peter
}

{Anna
}

{Paula
}

{Mark
}

{Maris
a}

{Bob}

John

Pete
r

An
na

Pa
ul
a

Bob

Marisa

M
ark

|𝐷!| = 1

𝑃𝑟(𝐷!) =
1
7

|𝐷"| = 1

𝑃𝑟(𝐷") =
1
7

|𝐷#| = 1

𝑃𝑟(𝐷#) =
1
7

|𝐷$| = 1

𝑃𝑟(𝐷$) =
1
7

|𝐷%| = 1

𝑃𝑟(𝐷%) =
1
7

|𝐷&| = 1

𝑃𝑟(𝐷&) =
1
7

|𝐷'| = 1

𝑃𝑟(𝐷') =
1
7

−
3
7 log"

3
7 −

4
7 log"

4
7

• How to quantify how “homogeneous" these quantities are?

• We’ve seen something like this before… Entropy!

−
1
7 log"

1
7 −

1
7 log"

1
7 −

1
7 log"

1
7 −

1
7 log"

1
7 −

1
7 log"

1
7 −

1
7 log"

1
7 −

1
7 log"

1
7

87Bruno Castro da Silva

Information Gain Ratio

TrafficTicket

Yes No

{John,
Mark,

Marisa}

{Peter,
Anna,
Paula,
Bob}

|𝐷"| = 3 |𝐷#| = 4

𝑃𝑟(𝐷$) =
3
7 𝑃𝑟(𝐷&) =

4
7

Name

{John}
{Peter
}

{Anna
}

{Paula
}

{Mark
}

{Maris
a}

{Bob}

John

Pete
r

An
na

Pa
ul
a

Bob

Marisa

M
ark

|𝐷!| = 1

𝑃𝑟(𝐷!) =
1
7

|𝐷"| = 1

𝑃𝑟(𝐷") =
1
7

|𝐷#| = 1

𝑃𝑟(𝐷#) =
1
7

|𝐷$| = 1

𝑃𝑟(𝐷$) =
1
7

|𝐷%| = 1

𝑃𝑟(𝐷%) =
1
7

|𝐷&| = 1

𝑃𝑟(𝐷&) =
1
7

|𝐷'| = 1

𝑃𝑟(𝐷') =
1
7

−
3
7 log"

3
7 −

4
7 log"

4
7

−
1
7 log"

1
7 −

1
7 log"

1
7 −

1
7 log"

1
7 −

1
7 log"

1
7 −

1
7 log"

1
7 −

1
7 log"

1
7 −

1
7 log"

1
7

• How to quantify how “homogeneous" these quantities are?

• We’ve seen something like this before… Entropy! → which is called, in this context, Split_Info

88Bruno Castro da Silva

Information Gain Ratio

Bruno Castro da Silva

TrafficTicket

Yes No

{John,
Mark,

Marisa}

{Peter,
Anna,
Paula,
Bob}

Name

{John}
{Peter
}

{Anna
}

{Paula
}

{Mark
}

{Maris
a}

{Bob}

John

Pete
r

An
na

Pa
ul
a

Bob

Marisa

M
ark

−
3
7 log"

3
7 −

4
7 log"

4
7

−
1
7 log"

1
7 −

1
7 log"

1
7 −

1
7 log"

1
7 −

1
7 log"

1
7 −

1
7 log"

1
7 −

1
7 log"

1
7 −

1
7 log"

1
7

• How to quantify how “homogeneous" these quantities are?

• We’ve seen something like this before… Entropy! → which is called, in this context, Split_Info

89

Information Gain Ratio

Bruno Castro da Silva

TrafficTicket

Yes No

{John,
Mark,

Marisa}

{Peter,
Anna,
Paula,
Bob}

Name

{John}
{Peter
}

{Anna
}

{Paula
}

{Mark
}

{Maris
a}

{Bob}

John

Pete
r

An
na

Pa
ul
a

Bob

Marisa

M
ark

−
3
7 log"

3
7 −

4
7 log"

4
7

−
1
7 log"

1
7 −

1
7 log"

1
7 −

1
7 log"

1
7 −

1
7 log"

1
7 −

1
7 log"

1
7 −

1
7 log"

1
7 −

1
7 log"

1
7

• How to quantify how “homogeneous" these quantities are?

• We’ve seen something like this before… Entropy! → which is called, in this context, Split_Info

Split_Info(TrafficTicket) =

Split_Info(Name) =

= 0.98

= 2.8

90

Information Gain Ratio

Bruno Castro da Silva

−
3
7 log"

3
7 −

4
7 log"

4
7

−
1
7 log"

1
7 −

1
7 log"

1
7 −

1
7 log"

1
7 −

1
7 log"

1
7 −

1
7 log"

1
7 −

1
7 log"

1
7 −

1
7 log"

1
7

• How to quantify how “homogeneous" these quantities are?

• We’ve seen something like this before… Entropy! → which is called, in this context, Split_Info

Split_Info(TrafficTicket)

Split_Info(Name) =

Name Age Gender TrafficTicket Class:  High-Risk
Driver

John 43 M Yes High Risk
Peter 18 M No Low Risk
Anna 35 F No Low Risk
Paula 19 F No Low Risk
Mark 90 M Yes High Risk
Marisa 19 F Yes Low Risk
Bob 30 M No Low Risk

= = 0.98

= 2.8

The larger value of Split_Info for Name suggests that this is a worse split than TrafficTicket

91

Information Gain Ratio

Bruno Castro da Silva

−
3
7 log"

3
7 −

4
7 log"

4
7

• The Information Gain Ratio combines two “measures" of how good a split (based on attribute 𝐴) is

• Its Information Gain, as previously defined → Gain!(𝐷) → higher is better

• Its Split_Info → Split_Info(𝐴) → higher is worse

Split_Info(TrafficTicket)

Split_Info(Name)

= 0.98

= 2.8

Name Age Gender TrafficTicket Class:  High-Risk Driver

John 43 M Yes High Risk

Peter 18 M No Low Risk

Anna 35 F No Low Risk

Paula 19 F No Low Risk

Mark 90 M Yes High Risk

Marisa 19 F Yes Low Risk

Bob 30 M No Low Risk

Gain_Ratio(𝐴, 𝐷) =
Gain'(𝐷)

Split_Info(𝐴)

=

= −
1
7 log"

1
7 −

1
7 log"

1
7 −

1
7 log"

1
7 −

1
7 log"

1
7 −

1
7 log"

1
7 −

1
7 log"

1
7 −

1
7 log"

1
7

The larger value of Split_Info for Name suggests that this is a worse split than TrafficTicket

92

Information Gain Ratio

Bruno Castro da Silva

Name Age Gender TrafficTicket Class:  High-Risk Driver

John 43 M Yes High Risk

Peter 18 M No Low Risk

Anna 35 F No Low Risk

Paula 19 F No Low Risk

Mark 90 M Yes High Risk

Marisa 19 F Yes Low Risk

Bob 30 M No Low Risk

Gain_Ratio(𝐴, 𝐷) =
Gain'(𝐷)

Split_Info(𝐴)

Split_Info(TrafficTicket)

Split_Info(Name)

GainTrafficTicket(D)

= 0.98

= 2.8

= 0.466

= 0.86GainName(D)

• The Information Gain Ratio combines two “measures" of how good a split (based on attribute 𝐴) is

• Its Information Gain, as previously defined → Gain!(𝐷) → higher is better

• Its Split_Info → Split_Info(𝐴) → higher is worse

93

Information Gain Ratio

Bruno Castro da Silva

Name Age Gender TrafficTicket Class:  High-Risk Driver

John 43 M Yes High Risk

Peter 18 M No Low Risk

Anna 35 F No Low Risk

Paula 19 F No Low Risk

Mark 90 M Yes High Risk

Marisa 19 F Yes Low Risk

Bob 30 M No Low Risk

Gain_Ratio(𝐴, 𝐷) =
Gain'(𝐷)

Split_Info(𝐴)

Split_Info(TrafficTicket)

Split_Info(Name)

GainTrafficTicket(D)

= 0.98

= 2.8

= 0.466

= 0.86GainName(D)

In terms of Information Gain only, Name looks like a good split
However, its Split_Info suggests that Name it’s a bad split

Let’s combine these into a single score that takes both into account
Gain_Ratio!

• The Information Gain Ratio combines two “measures" of how good a split (based on attribute 𝐴) is

• Its Information Gain, as previously defined → Gain!(𝐷) → higher is better

• Its Split_Info → Split_Info(𝐴) → higher is worse

94

Information Gain Ratio

Bruno Castro da Silva

Gain_Ratio(𝐴, 𝐷) =
Gain'(𝐷)

Split_Info(𝐴)

Split_Info(TrafficTicket)

Split_Info(Name)

GainTrafficTicket(D)

= 0.98

= 2.8

= 0.466

= 0.86GainName(D)

Gain_Ratio(Traf=icTicket, 𝐷) =
0.466
0.98 = 0.475

Gain_Ratio(Name,𝐷) =
0.86
2.8 = 0.307

In terms of Information Gain only, Name looks like a good split
However, its Split_Info suggests that Name it’s a bad split

Let’s combine these into a single score that takes both into account
Gain_Ratio!

• The Information Gain Ratio combines two “measures" of how good a split (based on attribute 𝐴) is

• Its Information Gain, as previously defined → Gain!(𝐷) → higher is better

• Its Split_Info → Split_Info(𝐴) → higher is worse

95

Information Gain Ratio

Bruno Castro da Silva

Gain_Ratio(𝐴, 𝐷) =
Gain'(𝐷)

Split_Info(𝐴)

Gain_Ratio(Traf=icTicket, 𝐷) =
0.466
0.98 = 0.475

Gain_Ratio(Name,𝐷) =
0.86
2.8 = 0.307

Let’s combine these into a single score that takes both into account
Gain_Ratio!

In terms of Information Gain only, Name looks like a good split
However, its Split_Info suggests that Name it’s a bad split

This criterion “understands" that
splitting based on TrafficTicket

is better than splitting based on Name

• The Information Gain Ratio combines two “measures" of how good a split (based on attribute 𝐴) is

• Its Information Gain, as previously defined → Gain!(𝐷) → higher is better

• Its Split_Info → Split_Info(𝐴) → higher is worse

96

Bruno Castro da Silva

Criteria for Selecting an Attribute to Test

• We have discussed one possible criterion for selecting which attribute to test

• Information Gain

• Many other criteria have been proposed — each with different properties

• Intuitively:

• A split that keeps the same proportion of classes in each partition is useless
• A split where the instances in each partition have the same class is useful!

• Main criteria for selecting which attribute to test:

• Information Gain - ID3 Algorithm (Quilan, 1987)

• Information Gain Ratio - C4.5 Algorithm (Quilan, 1988)

• Gini Impurity - CART Algorithm (Breiman, 1984)

97

Gini Criterion

Bruno Castro da Silva

• Originally proposed to quantify how uneven income is across a population

• Gini coefficient → how uneven income/wealth distribution across a population is

• Gini = 1 → very uneven income/wealth distribution across a population

• Gini = 0 → very even income/wealth distribution across a population

98

Gini Criterion

Bruno Castro da Silva

Even “Medium” Uneven

• In the context of decision trees

• how uneven (or non-homogeneous) are the classes after a split

Will repay loan

Will not repay loan

Let’s suppose we test Age, and the instances associated with Age=Young look like this

• Gini coefficient → how uneven income/wealth distribution across a population is

Pr() = 1
Pr() = 0

Pr() = 3/4
Pr() = 1/4

Pr() = 2/4
Pr() = 2/4

99

Gini Criterion

Bruno Castro da Silva

Even “Medium” Uneven

• In the context of decision trees

• how uneven (or non-homogeneous) are the classes after a split

Will repay loan

Will not repay loan

Let’s suppose we test Age, and the instances associated with Age=Young look like this

• Gini coefficient → how uneven income/wealth distribution across a population is

Pr() = 1
Pr() = 0

Pr() = 3/4
Pr() = 1/4

Pr() = 2/4
Pr() = 2/4

Gini(D) = 1 - (Pr()2 + Pr()2)

1 − (1" + 0")Gini ⇒ 1 − (3/4)& + (1/4)&

= 0 = 0.375
1 − (2/4)& + (2/4)&

= 0.5
100

Gini Criterion

Bruno Castro da Silva

Even “Medium” Uneven

• In the context of decision trees

• how uneven (or non-homogeneous) are the classes after a split

Will repay loan

Will not repay loan

Let’s suppose we test Age, and the instances associated with Age=Young look like this

• Gini coefficient → how uneven income/wealth distribution across a population is

Gini(D) = 1 - (Pr()2 + Pr()2)

1 − (1" + 0")Gini ⇒ 1 − (3/4)& + (1/4)&

= 0 = 0.375
1 − (2/4)& + (2/4)&

= 0.5

more homogenous partition → ideal result of a split
(smaller value of the Gini coefficient)

101

Gini Criterion

Bruno Castro da Silva

• In the context of decision trees

• how uneven (or non-homogeneous) are the classes after a split

Gini(D) = 1 - (Pr()2 + Pr()2)

• More generally, if there are 𝑚 classes in a dataset 𝐷

Gini(𝐷) = 1 − ∑
()*

+
(𝑝(),

where 𝑝J be the probability that the label/class 𝑖 occurs in instances in a dataset 𝐷

102

Bruno Castro da Silva 103

• Let’s consider testing Weather

Original dataset: 9 instances “Yes"
 5 instances "No"

yes yes yes yes yes yes yes yes yes
no no no no no

Weather

yes
yes
no
no
no

yes
yes
yes
yes

yes
yes
yes
no
no

Sunny

Overcast

Rainy

Gini Criterion

• Decision tree to predict whether a person will play tennis

Bruno Castro da Silva 104

• Decision tree to predict whether a person will play tennis

• Let’s consider testing Weather

Original dataset: 9 instances “Yes"
 5 instances "No"

yes yes yes yes yes yes yes yes yes
no no no no no

Weather

yes
yes
no
no
no

yes
yes
yes
yes

yes
yes
yes
no
no

Sunny

Overcast

Rainy

• Gini coefficient of the original dataset:

• Gini(9/14, 5/14) = 1 - ((9/14)2 + (5/14)2)
 = 0.459

• Gini coeff. of partitions resulting from testing Weather:
• Weather=Sunny

• GiniSunny(2/5, 3/5) = 1 - ((2/5)2 + (3/5)2)
 = 0.48

• Weather=Overcast

• GiniOvercast(4/4, 0/4) = 1 - ((4/4)2 + (0/4)2)
 = 0

• Weather=Rainy

• GiniRainy(3/5, 2/5) = 1 - ((3/5)2 + (2/5)2)
 = 0.48

• Average Gini coefficient of the resulting partitions

• (5/14)x0.48 + (4/14)x0 + (5/14)x0.48 = 0.3428

Gini Criterion

Bruno Castro da Silva 105

• Decision tree to predict whether a person will play tennis

Testing the attribute Weather:
Gini(Weather) = 0.3428

• Now proceed similarly as
when selecting attributes via
Information Gain…

• Gini coefficient of the original dataset:

• Gini(9/14, 5/14) = 1 - ((9/14)2 + (5/14)2)
 = 0.459

• Gini coeff. of partitions resulting from testing Weather:
• Weather=Sunny

• GiniSunny(2/5, 3/5) = 1 - ((2/5)2 + (3/5)2)
 = 0.48

• Weather=Overcast

• GiniOvercast(4/4, 0/4) = 1 - ((4/4)2 + (0/4)2)
 = 0

• Weather=Rainy

• GiniRainy(3/5, 2/5) = 1 - ((3/5)2 + (2/5)2)
 = 0.48

• Average Gini coefficient of the resulting partitions

• (5/14)x0.48 + (4/14)x0 + (5/14)x0.48 = 0.3428

• Compute Gini coefficient
of each candidate attribute

• Split dataset using the attribute
with the lowest Gini coefficient

Gini Criterion

Bruno Castro da Silva

Formally:

• Let 𝑝" be the probability that the label 𝑖 occurs in instances in a dataset 𝐷

• Gini(𝐷) = 1 − ∑
"#$

%
(𝑝")& is the Gini coefficient of an arbitrary dataset 𝐷 (𝑚 is the number of classes/labels)

• Assume that the attribute 𝐴 can take up 𝑣 values

(that is, if we split 𝐷 based on attribute 𝐴, we will end up with 𝑣 partitions)

• Let Gini'(𝐷) = ∑
(#$

! |*!|
|*|

Gini(𝐷() be the Gini coefficient associated with splitting 𝐷 based on 𝐴

• At each step, the algorithm splits the instances based on the attribute 𝐴 with lowest Gini coefficient

Gini Criterion

106

Bruno Castro da Silva

Criteria for Selecting an Attribute to Test

• Main criteria for selecting which attribute to test:

• Information Gain - ID3 Algorithm (Quilan, 1987)

• Information Gain Ratio - C4.5 Algorithm (Quilan, 1988)

• Gini Impurity - CART Algorithm (Breiman, 1984)

• Empirically:

• Information Gain Ratio is almost always better than Information Gain

• in terms of predictive power and complexity of the resulting decision trees

• However, in practice

• which criterion will work best depends heavily on the application

• should test them all and compare the resulting performances

107

Dealing with Numerical Attributes

Bruno Castro da Silva

Weather

yes
yes
no
no
no

yes
yes
yes
yes

yes
yes
yes
no
no

Sunny

Overcast

Rainy

• So far we have studied how to select which categorical attribute to split

One branch per possible value of the attribute

• How do we decide a splitting point/value in case of numerical attributes?

Age≤20

T F

Low
Risk

High
Risk

Consider deciding how to split the attribute Age

Pick a threshold value, 𝑉
Generate two branches/disjoint partitions:

- one partition with instances s.t. Age ≤ 𝑉
- one partition with instances s.t. Age > 𝑉

108

Dealing with Numerical Attributes

Bruno Castro da Silva

• How do we decide a splitting point/value in case of numerical attributes?

Name Age Gender TrafficTicket Class:  High-Risk
Driver

John 43 M Yes High Risk
Peter 18 M No High Risk
Anna 35 F No Low Risk
Paula 19 F No High Risk
Mark 90 M Yes High Risk
Marisa 21 F Yes High Risk
Bob 30 M No Low Risk

- one partition with instances s.t. Age ≤ 𝑉
- one partition with instances s.t. Age > 𝑉

1) Sort the instances according to the value of the attribute

109

Dealing with Numerical Attributes

Bruno Castro da Silva

• How do we decide a splitting point/value in case of numerical attributes?

Name Age Gender TrafficTicket Class:  High-Risk
Driver

Peter 18 M No High Risk
Paula 19 F No High Risk
Marisa 21 F Yes High Risk
Bob 30 M No Low Risk
Anna 35 F No Low Risk
John 43 M Yes High Risk
Mark 90 M Yes High Risk

- one partition with instances s.t. Age ≤ 𝑉
- one partition with instances s.t. Age > 𝑉

1) Sort the instances according to the value of the attribute

110

Dealing with Numerical Attributes

Bruno Castro da Silva

• How do we decide a splitting point/value in case of numerical attributes?

Name Age Gender TrafficTicket Class:  High-Risk
Driver

Peter 18 M No High Risk
Paula 19 F No High Risk
Marisa 21 F Yes High Risk
Bob 30 M No Low Risk
Anna 35 F No Low Risk
John 43 M Yes High Risk
Mark 90 M Yes High Risk

- one partition with instances s.t. Age ≤ 𝑉
- one partition with instances s.t. Age > 𝑉

1) Sort the instances according to the value of the attribute
2) Evaluate splits done using as threshold the mean values between consecutive Ages

111

Dealing with Numerical Attributes

Bruno Castro da Silva

• How do we decide a splitting point/value in case of numerical attributes?

Name Age Gender TrafficTicket Class:  High-Risk
Driver

Peter 18 M No High Risk
Paula 19 F No High Risk
Marisa 21 F Yes High Risk
Bob 30 M No Low Risk
Anna 35 F No Low Risk
John 43 M Yes High Risk
Mark 90 M Yes High Risk

- one partition with instances s.t. Age ≤ 𝑉
- one partition with instances s.t. Age > 𝑉

1) Sort the instances according to the value of the attribute

Age≤18.5

2) Evaluate splits done using as threshold the mean values between consecutive Ages

112

Dealing with Numerical Attributes

Bruno Castro da Silva

• How do we decide a splitting point/value in case of numerical attributes?

Name Age Gender TrafficTicket Class:  High-Risk
Driver

Peter 18 M No High Risk
Paula 19 F No High Risk
Marisa 21 F Yes High Risk
Bob 30 M No Low Risk
Anna 35 F No Low Risk
John 43 M Yes High Risk
Mark 90 M Yes High Risk

- one partition with instances s.t. Age ≤ 𝑉
- one partition with instances s.t. Age > 𝑉

1) Sort the instances according to the value of the attribute

Age≤20

2) Evaluate splits done using as threshold the mean values between consecutive Ages

Age≤18.5

113

Dealing with Numerical Attributes

114Bruno Castro da Silva

• How do we decide a splitting point/value in case of numerical attributes?

Name Age Gender TrafficTicket Class:  High-Risk
Driver

Peter 18 M No High Risk
Paula 19 F No High Risk
Marisa 21 F Yes High Risk
Bob 30 M No Low Risk
Anna 35 F No Low Risk
John 43 M Yes High Risk
Mark 90 M Yes High Risk

- one partition with instances s.t. Age ≤ 𝑉
- one partition with instances s.t. Age > 𝑉

1) Sort the instances according to the value of the attribute

Age≤20

Age≤25.5

2) Evaluate splits done using as threshold the mean values between consecutive Ages

Age≤18.5

Dealing with Numerical Attributes

Bruno Castro da Silva

• How do we decide a splitting point/value in case of numerical attributes?

Name Age Gender TrafficTicket Class:  High-Risk
Driver

Peter 18 M No High Risk
Paula 19 F No High Risk
Marisa 21 F Yes High Risk
Bob 30 M No Low Risk
Anna 35 F No Low Risk
John 43 M Yes High Risk
Mark 90 M Yes High Risk

- one partition with instances s.t. Age ≤ 𝑉
- one partition with instances s.t. Age > 𝑉

1) Sort the instances according to the value of the attribute

Age≤20

Age≤25.5

Age≤32.5

2) Evaluate splits done using as threshold the mean values between consecutive Ages

Age≤18.5

115

Dealing with Numerical Attributes

Bruno Castro da Silva

• How do we decide a splitting point/value in case of numerical attributes?

Name Age Gender TrafficTicket Class:  High-Risk
Driver

Peter 18 M No High Risk
Paula 19 F No High Risk
Marisa 21 F Yes High Risk
Bob 30 M No Low Risk
Anna 35 F No Low Risk
John 43 M Yes High Risk
Mark 90 M Yes High Risk

- one partition with instances s.t. Age ≤ 𝑉
- one partition with instances s.t. Age > 𝑉

1) Sort the instances according to the value of the attribute

Age≤20

Age≤25.5

Age≤32.5

Age≤39

2) Evaluate splits done using as threshold the mean values between consecutive Ages

Age≤18.5

116

Dealing with Numerical Attributes

Bruno Castro da Silva

• How do we decide a splitting point/value in case of numerical attributes?

Name Age Gender TrafficTicket Class:  High-Risk
Driver

Peter 18 M No High Risk
Paula 19 F No High Risk
Marisa 21 F Yes High Risk
Bob 30 M No Low Risk
Anna 35 F No Low Risk
John 43 M Yes High Risk
Mark 90 M Yes High Risk

- one partition with instances s.t. Age ≤ 𝑉
- one partition with instances s.t. Age > 𝑉

1) Sort the instances according to the value of the attribute

Age≤20

Age≤25.5

Age≤32.5

Age≤39

Age≤66.5

2) Evaluate splits done using as threshold the mean values between consecutive Ages

Age≤18.5

117

Dealing with Numerical Attributes

Bruno Castro da Silva

• How do we decide a splitting point/value in case of numerical attributes?

- one partition with instances s.t. Age ≤ 𝑉
- one partition with instances s.t. Age > 𝑉

1) Sort the instances according to the value of the attribute

Age≤20 Age≤25.5 Age≤32.5 Age≤39 Age≤66.5

3) Pick the split threshold that maximizes the criterion of interest (Info. Gain, Gini, etc.)

• It has been shown that, for most commonly-used splitting criteria

• testing only thresholds that correspond to such mean values is sufficient

2) Evaluate splits done using as threshold the mean values between consecutive Ages

Age≤18.5

118

Bruno Castro da Silva

• Pros:
• Simple for humans to understand and interpret

• Handles both numerical and categorical attributes

• Requires little data preparation (e.g., no need to normalize attributes)

• Performs well with large datasets

• “Automatically" ignores irrelevant attributes not useful to predict the class/label

• Cons:
• Non-robust: small variations in the dataset can generate completely different trees

• Often generate overly-complicated trees that overfit to training data

• i.e., that do not generalize well (make correct predictions) to new instances

• Although it is possible to deal with numerical attributes, it is time-consuming

• estimates suggest that processing them takes ~70% of execution time (Catlett, 1991)

Decision Trees: Pros and Cons

119

