

Lecture 5: Decision Trees

Decision Trees

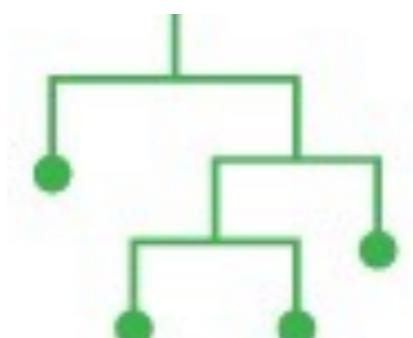
- **Decision Trees**
 - extract a set of classification rules to classify a given instance
 - like IF-ELSE statements, testing different attributes
 - ML model that is highly interpretable by humans

Decision Trees

	#friends	funnyscore	Likes
Post1	40	8	28
Post2	36	10	28
Post3	20	6	16
Post4	56	4	31
Post5	58	0	29
Post6	46	10	33


```
if #friends >= 50
  if funny_score > 3
    Likes >= 30
  else
    Likes < 30
else
  if funny_score > 9
    Likes >= 30
  else
    Likes < 30
```

Decision Trees



Learning to Play the 20 Questions Game

<http://en.akinator.com/>

Question №1

Is your character a female?

Yes

No

Don't know

Probably

Probably not

Correct

Question N°2

Is your character real?

Yes

No

Don't know

Probably

Probably not

Correct

Question N°3

Is your character a famous youtuber?

Yes

No

Don't know

Probably

Probably not

Correct

Question N°4

Is your character older than 35 years old?

Yes

No

Don't know

Probably

Probably not

Correct

Question N°5

Is your character American ?

Yes

No

Don't know

Probably

Probably not

Correct

Question N°6

Is your character an actor?

Yes

No

Don't know

Probably

Probably not

Correct

Question №7

Is your character the president
or was he?

Yes

No

Don't know

Probably

Probably not

Correct

Question №8

Is your character black?

Yes

No

Don't know

Probably

Probably not

Decision Trees

- Which attributes of a person to test first, to guess as fast as possible?
 - Is the person a man or a woman?
 - Is the person older than 5 years old?

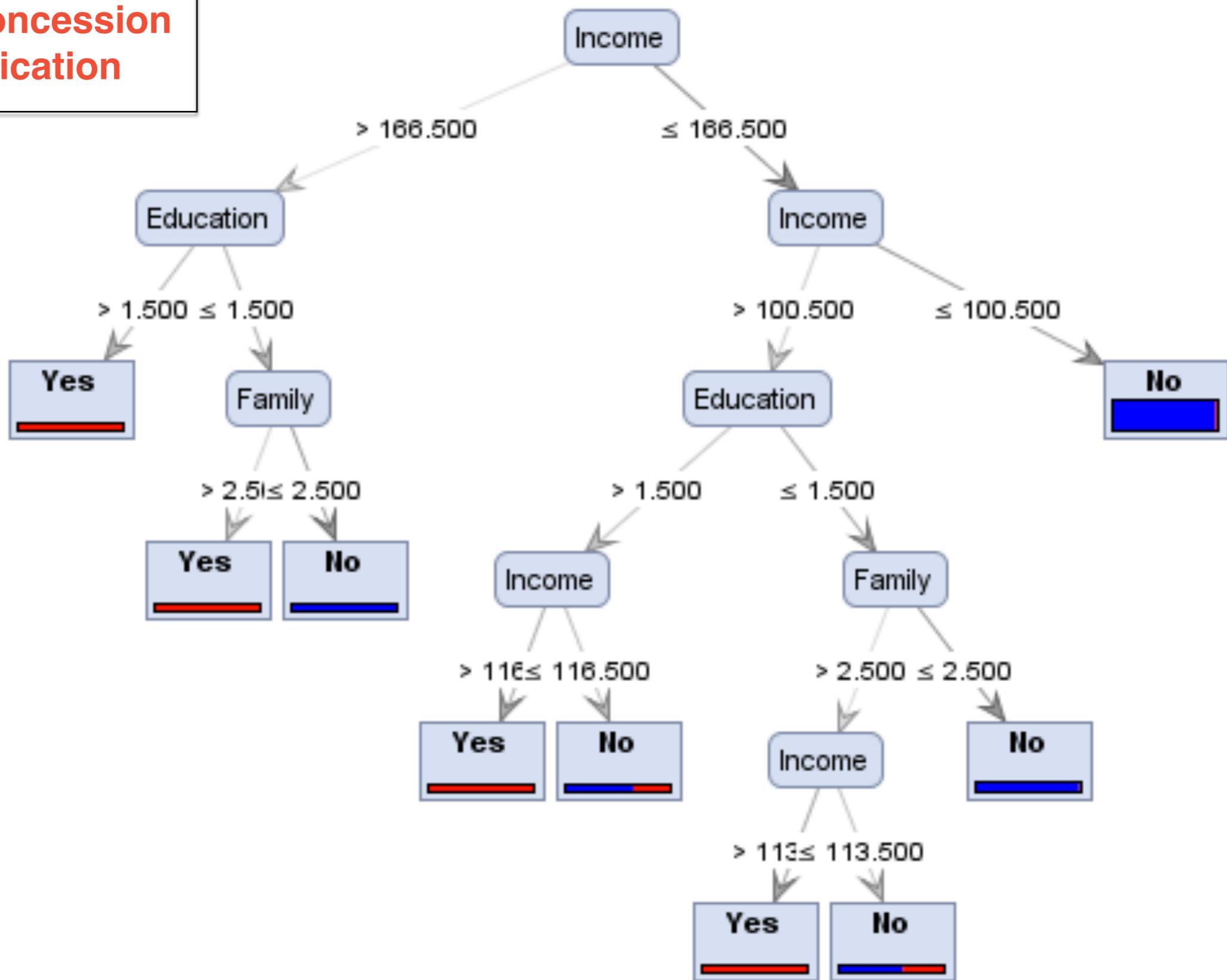
Information Gain

- $G(\text{"Gender"}) = 0.9$
- $G(\text{"Lives_in_USA"}) = 0.73$
- $G(\text{"Is_Politician"}) = 0.36$
- ...

Entropy of a set (or dataset)

Decision Trees

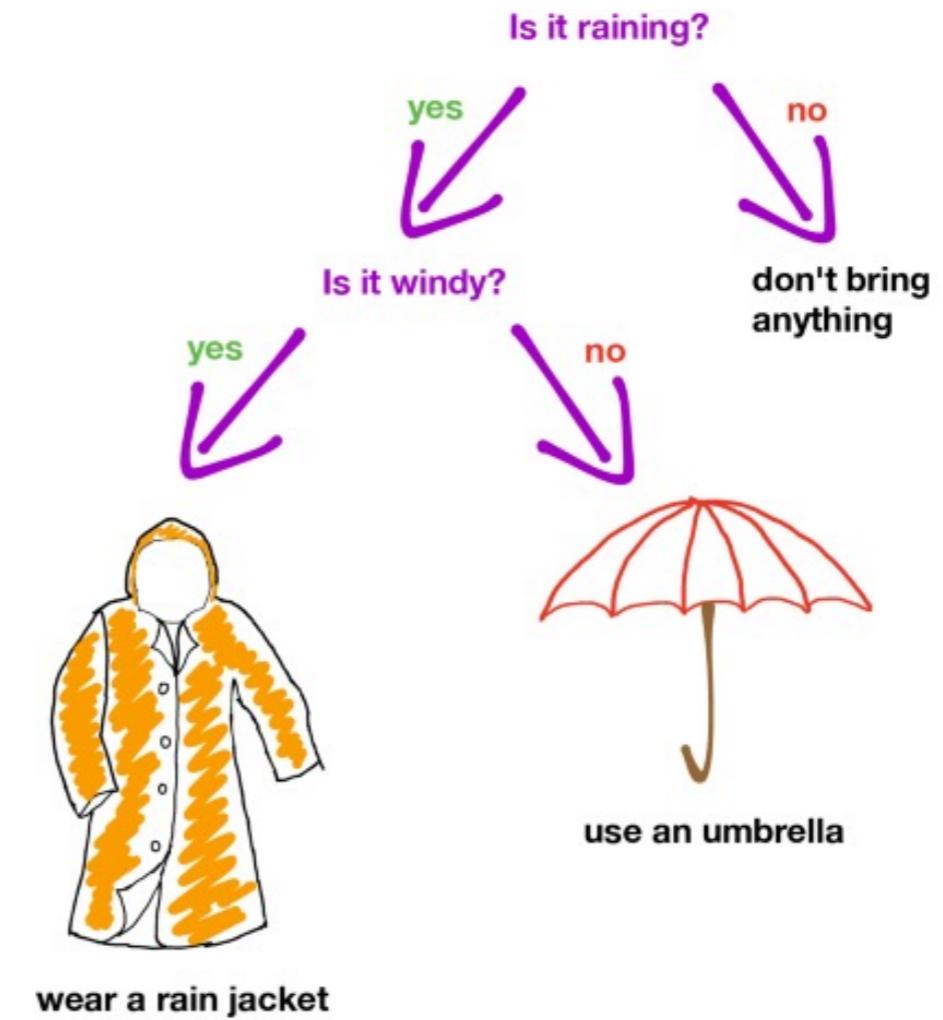
Loan Concession Application



Decision Trees

- **Decision Tree**

- Simple ML model/algorithm
- Widely used in practice
- Easy to *interpret*

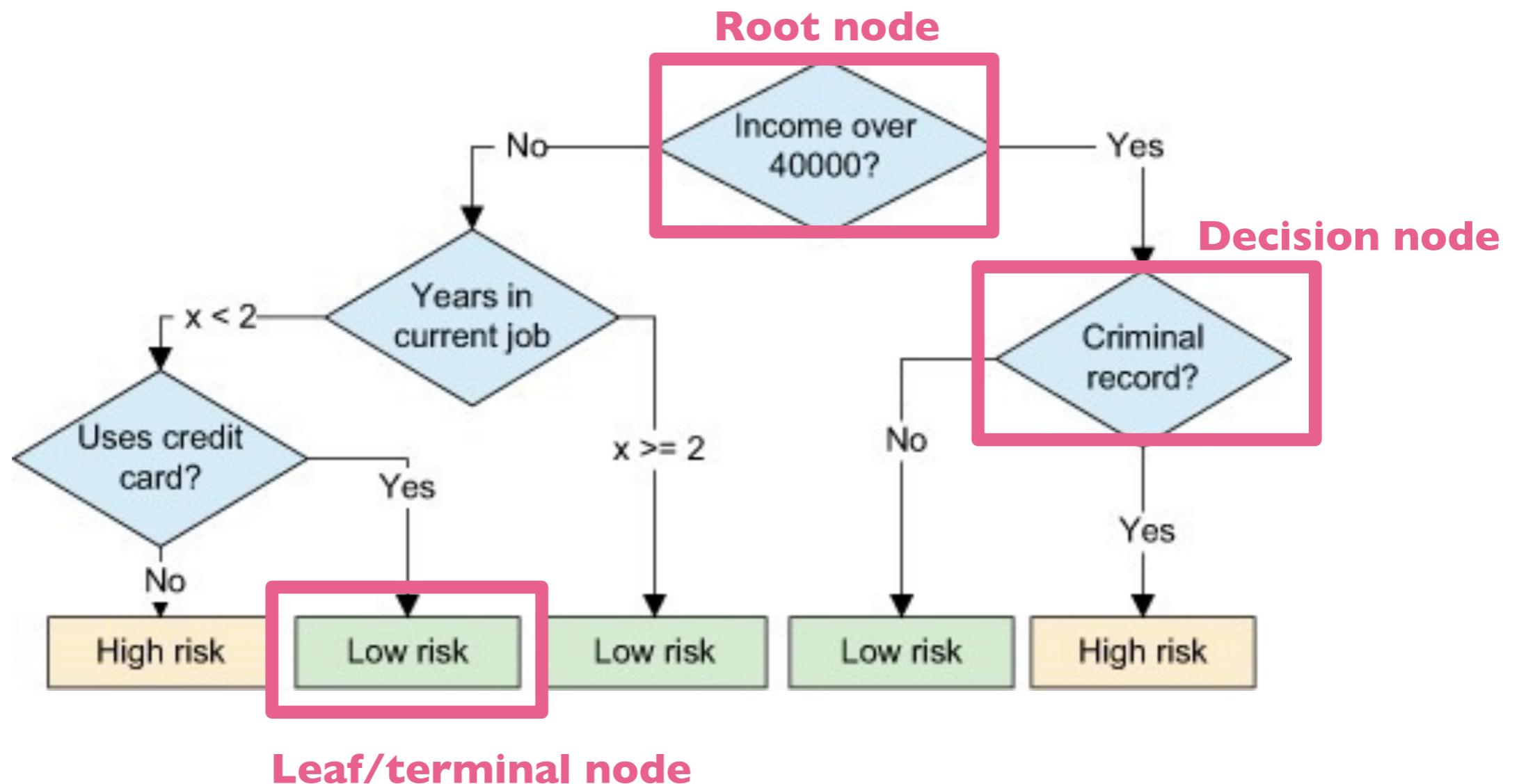


© Machine Learning @ Berkeley

- Performs a series of tests on attributes of an instance
 - eventually leading to decision/prediction about the class of that instance

Decision Trees

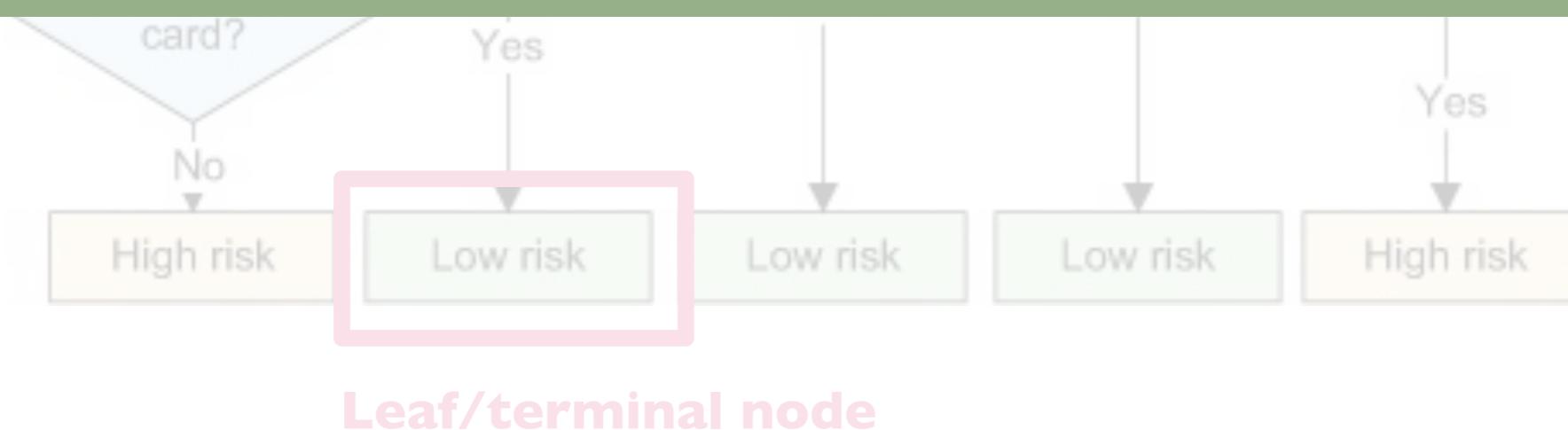
**A decision tree for
testing loan suitability**



Decision Trees

**A decision tree for
testing loan suitability**

**Hierarchical model used to decide/predict
to which class a given instance belongs**



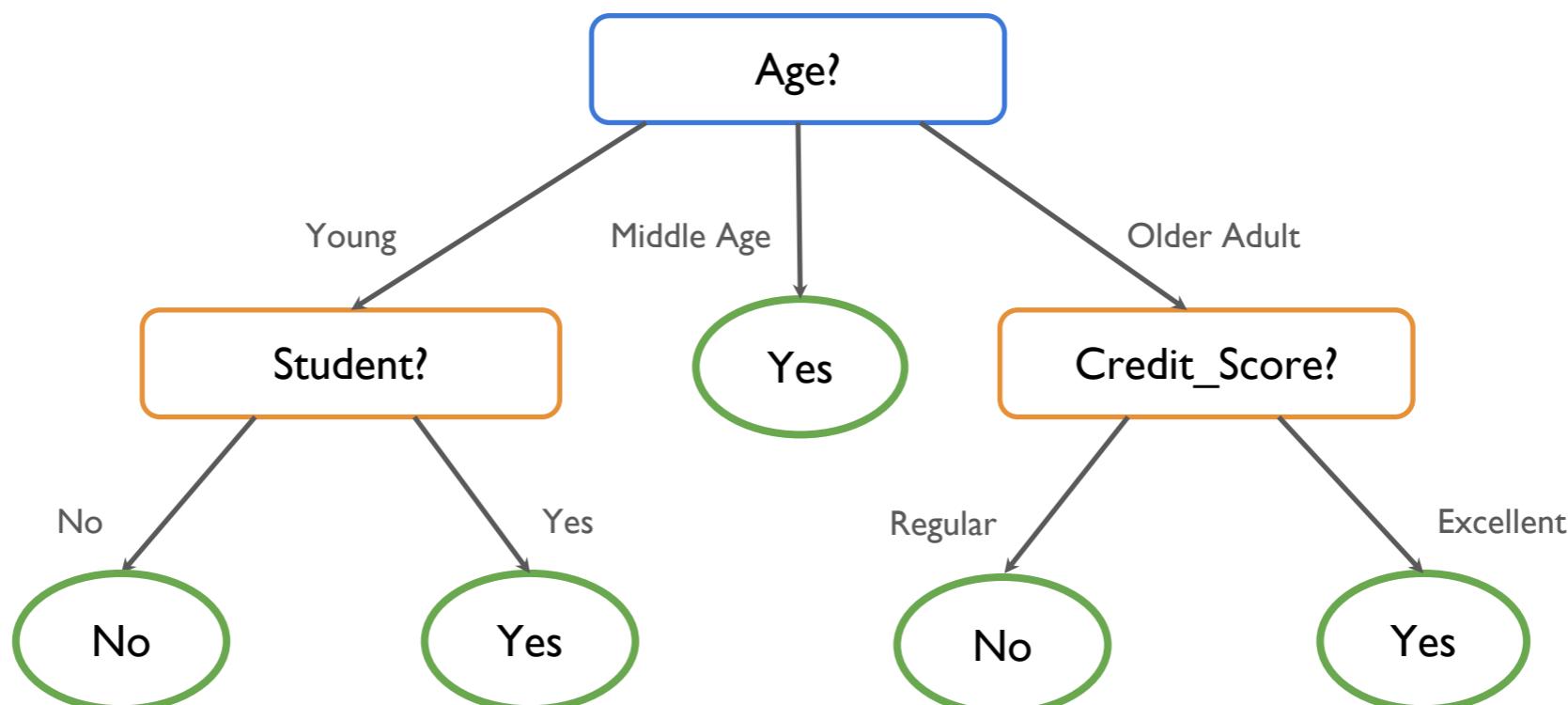
Leaf/terminal node

Decision Trees

How likely it is that a given client will buy a computer?

Each instance, x_i , is described by the following attributes

$x_i = [\text{Student}, \text{Age}, \text{Credit_Score}]$, where $y_i \in \{\text{Yes}, \text{No}\}$



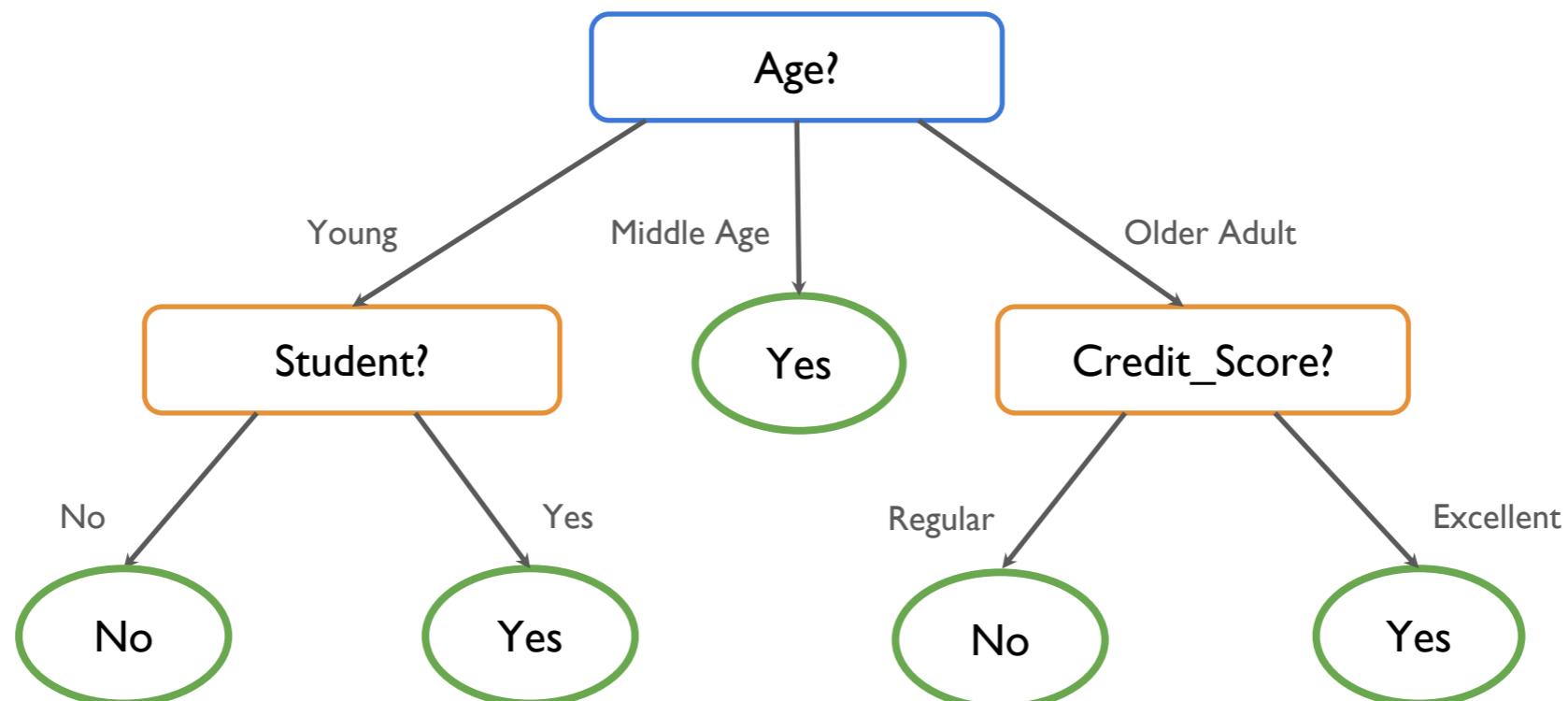
- Each non-leaf node tests the value of a given attribute
- Each branch corresponds to one possible value of that attribute
- Each leaf corresponds to predicting one particular class
- The path from the root node to a leaf defines a **classification rule**

Decision Trees

How likely it is that a given client will buy a computer?

Instance to be classified:

Student	Age	Credit_Score	Will_Buy_Computer
Yes	Young	Regular	??

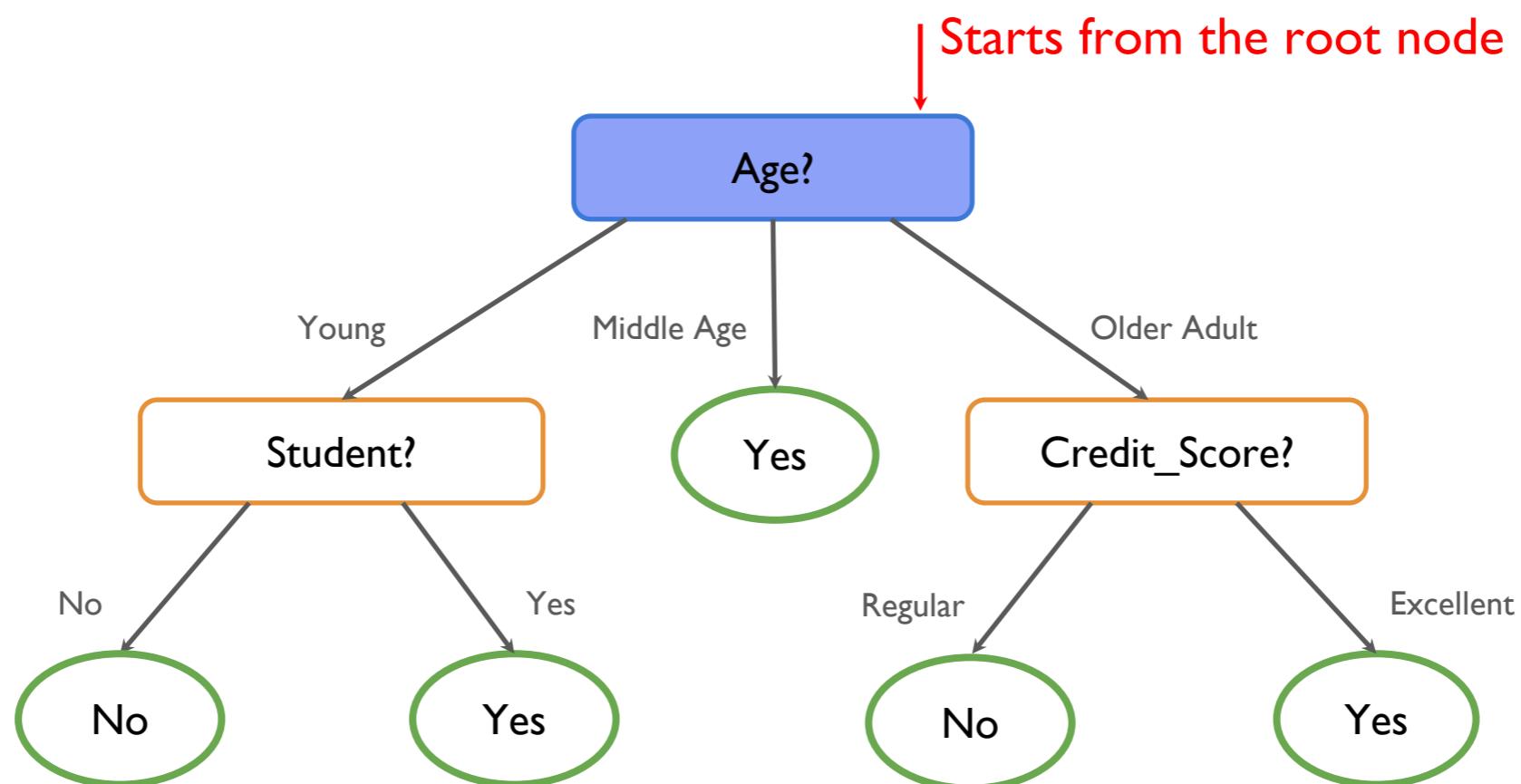


Decision Trees

How likely it is that a given client will buy a computer?

Instance to be classified:

Student	Age	Credit_Score	Will_Buy_Computer
Yes	Young	Regular	??

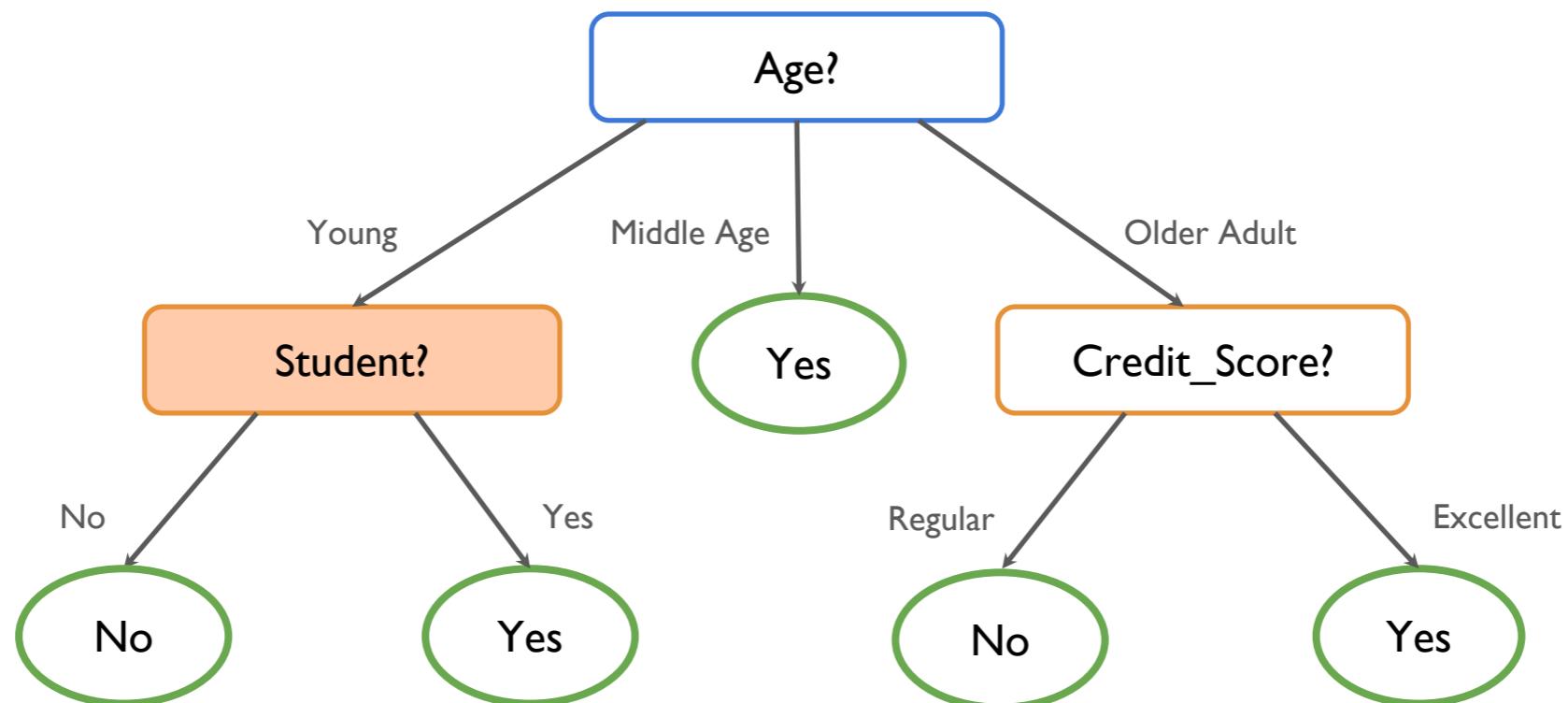


Decision Trees

How likely it is that a given client will buy a computer?

Instance to be classified:

Student	Age	Credit_Score	Will_Buy_Computer
Yes	Young	Regular	??

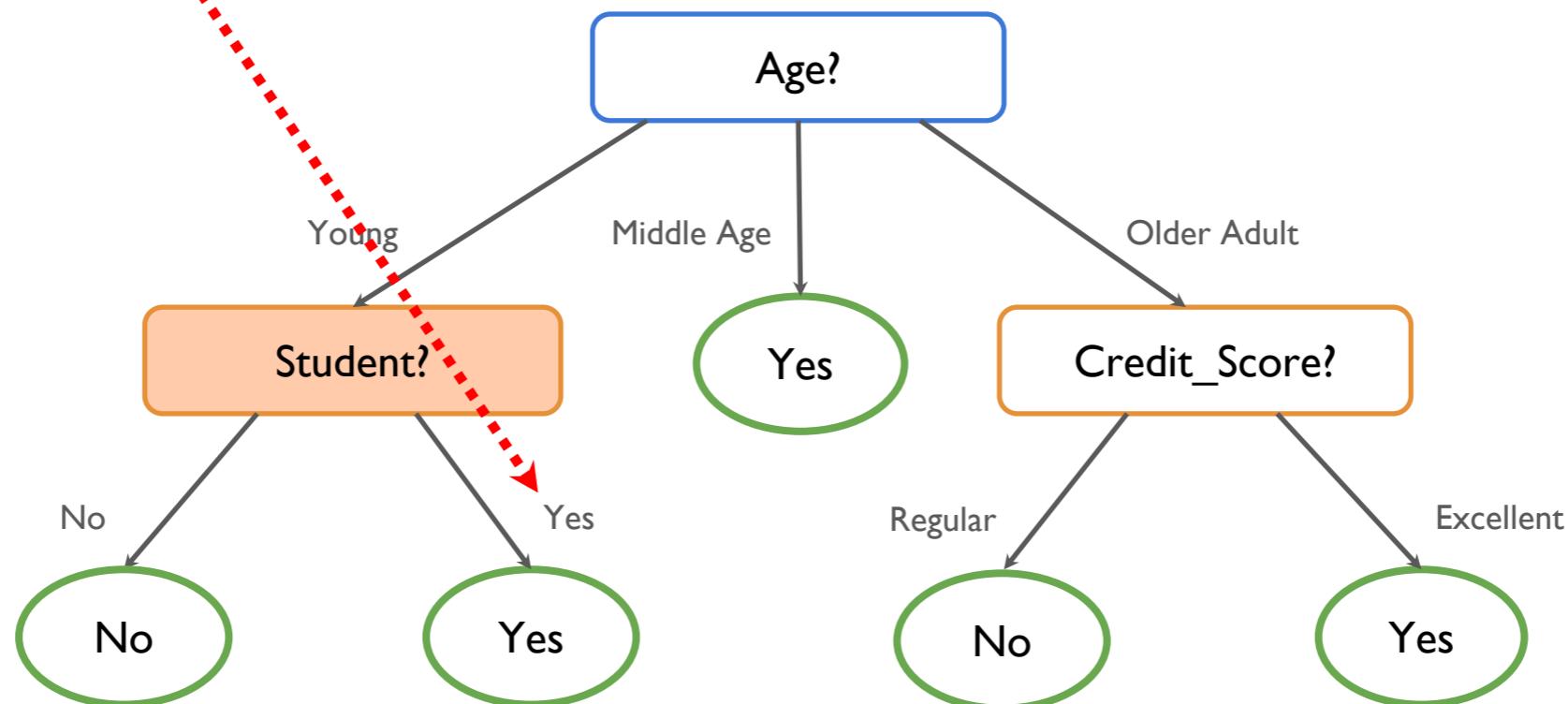


Decision Trees

How likely it is that a given client will buy a computer?

Instance to be classified:

Student	Age	Credit_Score	Will_Buy_Computer
Yes	Young	Regular	??

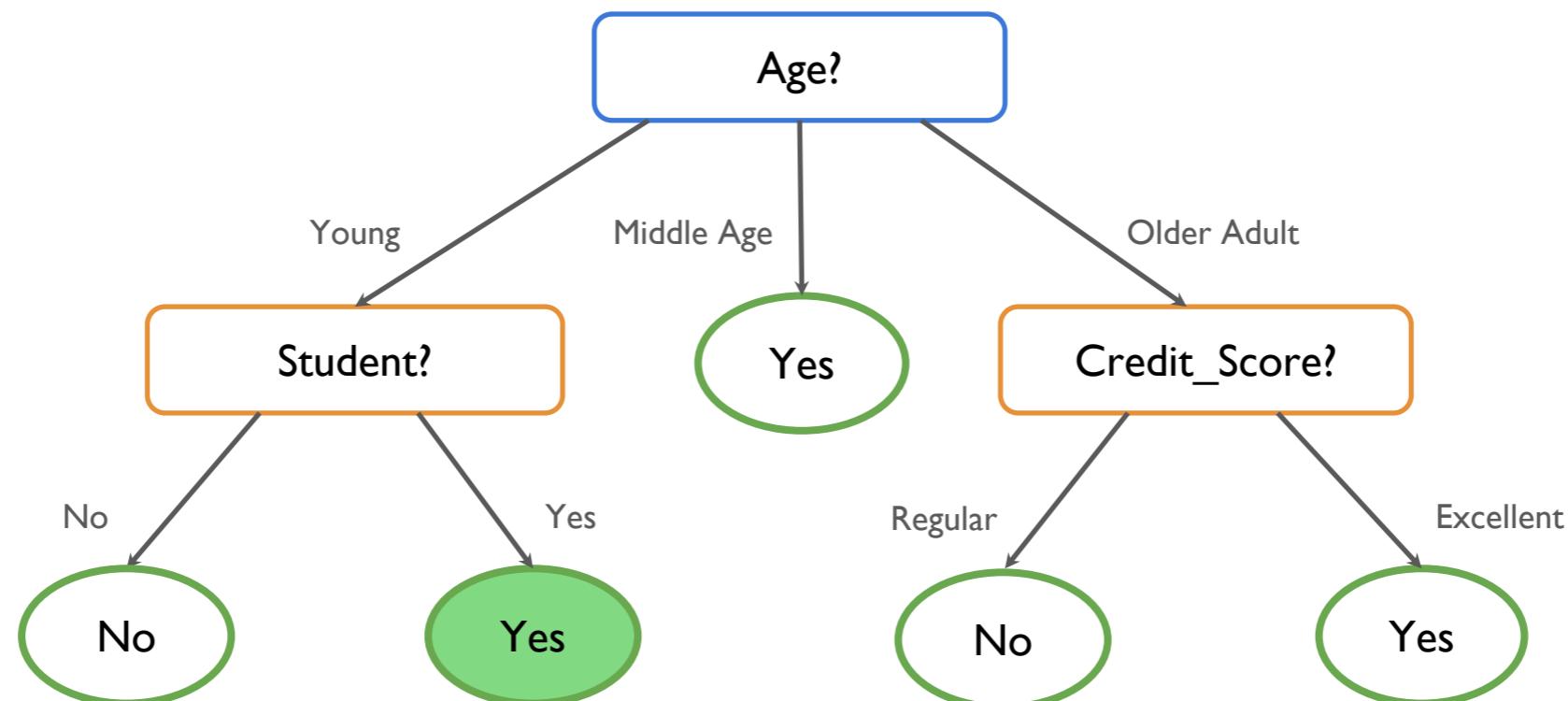


Decision Trees

How likely it is that a given client will buy a computer?

Instance to be classified:

Student	Age	Credit_Score	Will_Buy_Computer
Yes	Young	Regular	??

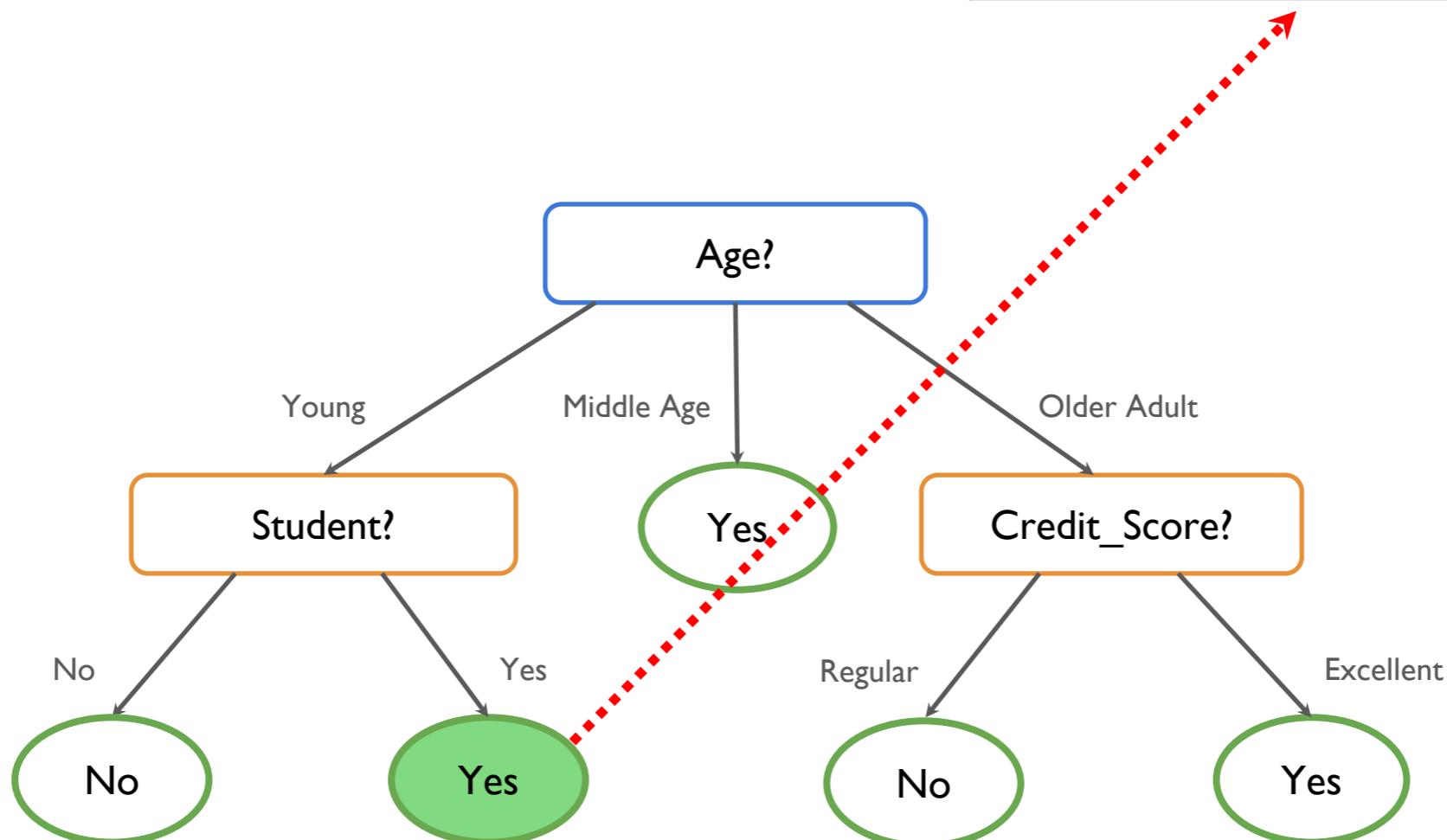


Decision Trees

How likely it is that a given client will buy a computer?

Instance to be classified:

Student	Age	Credit_Score	Predicted Class
			Will_Buy_Computer
Yes	Young	Regular	Yes

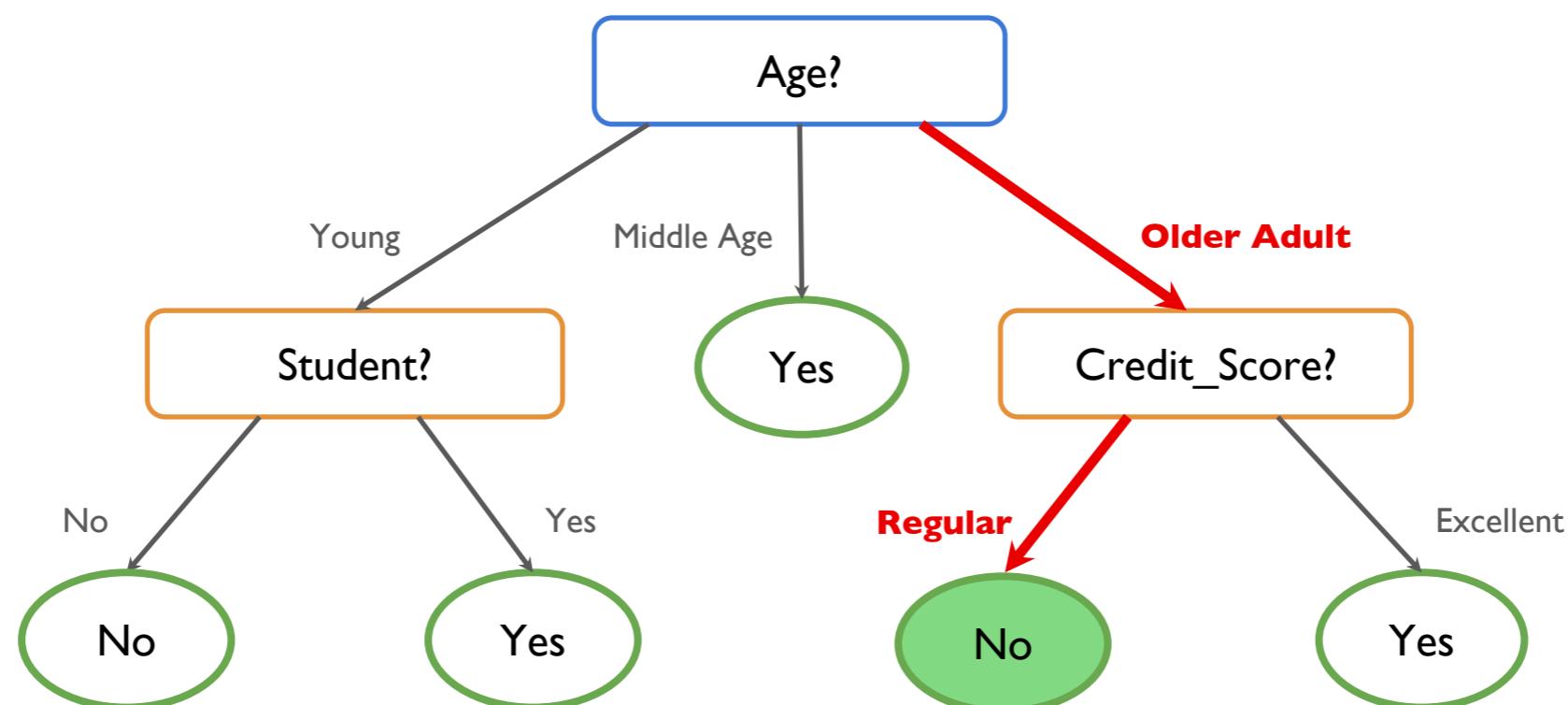


Decision Trees

How would the following instance be classified?

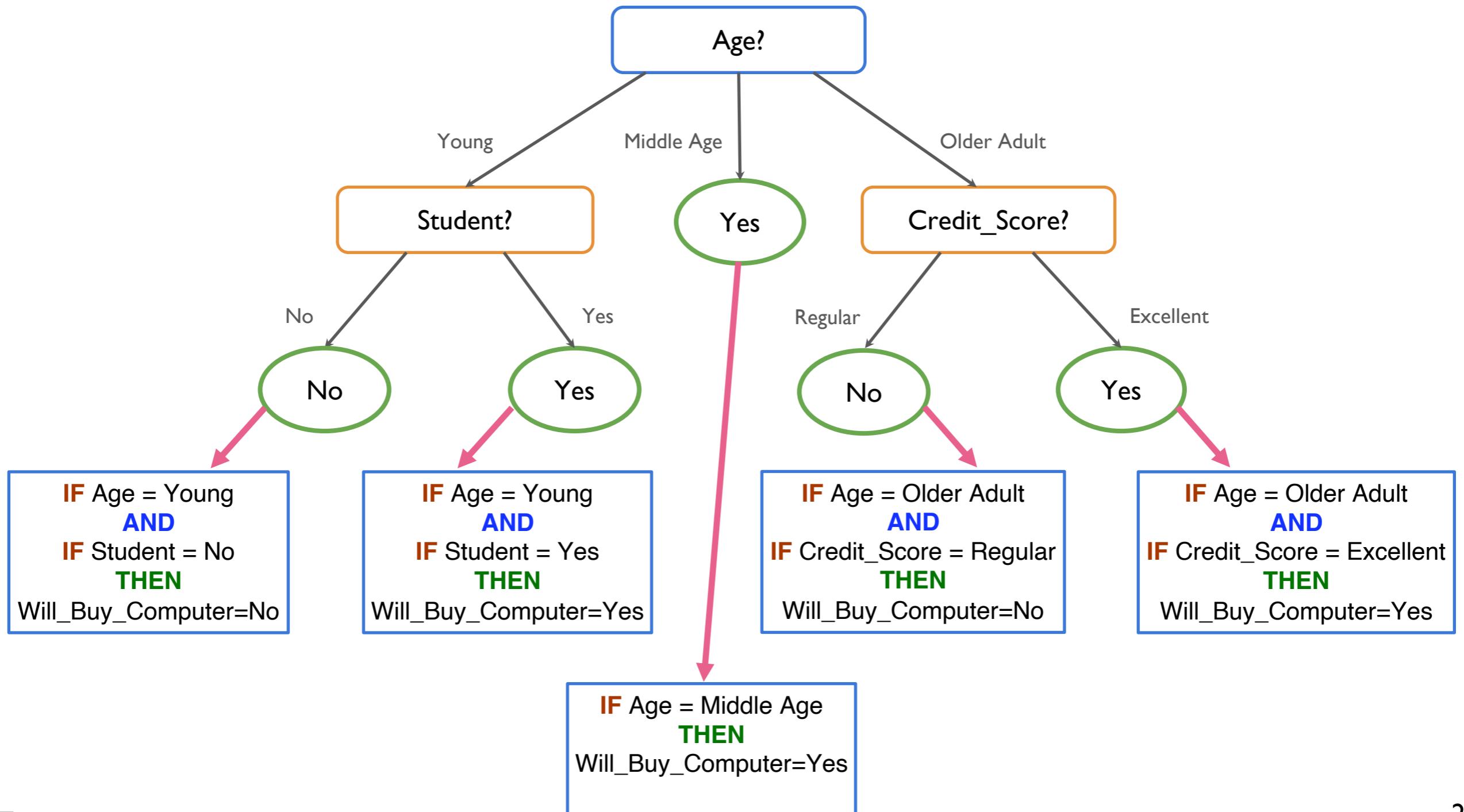
Instance to be classified:

Student	Age	Credit_Score	Predicted Class
			Will_Buy_Computer
No	Older Adult	Regular	No



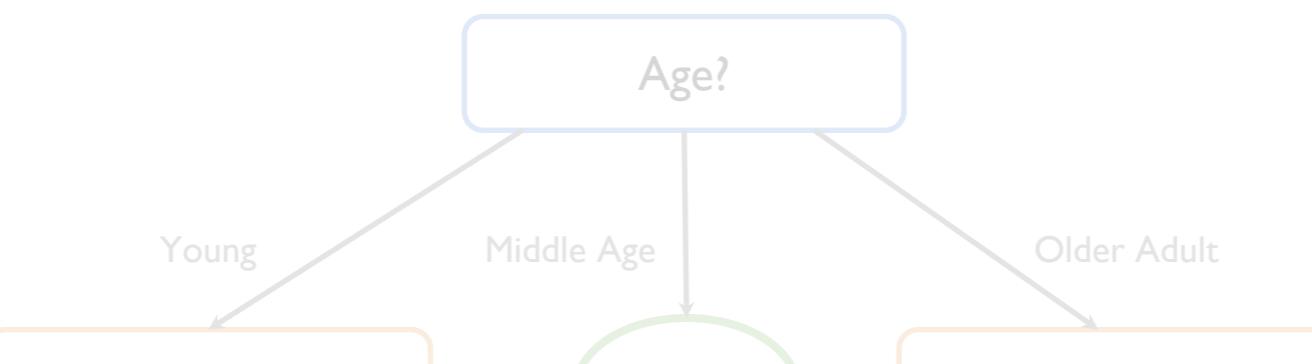
Decision Trees

Decision trees encode classification rules via (implicit) IF-ELSE statements

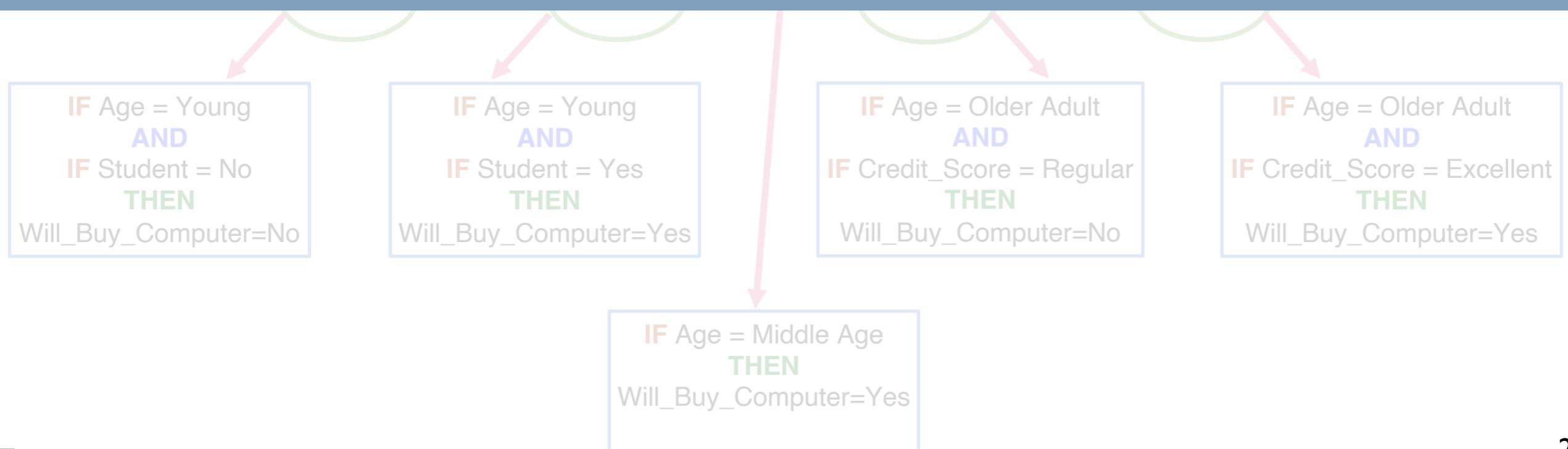


Decision Trees

Decision trees encode classification rules via (implicit) IF-ELSE statements



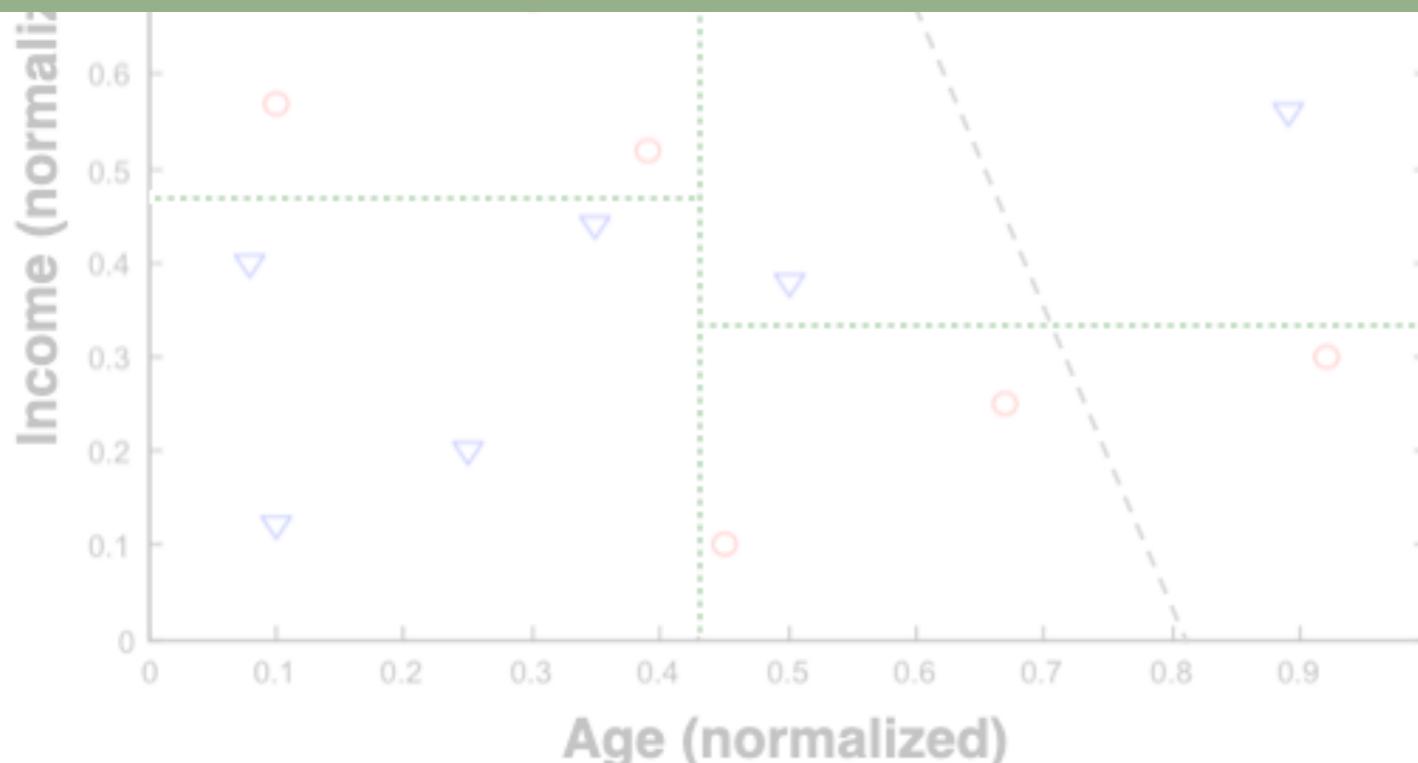
**How to construct a decision tree
based on training data?**



Decision Trees

- General idea
- **Repeat** “until classifier is good enough”
 - Select the “best” attribute
 - Split the instances based on the value of this attribute (new decision rule)

Divide-and-Conquer Strategy



Decision Trees

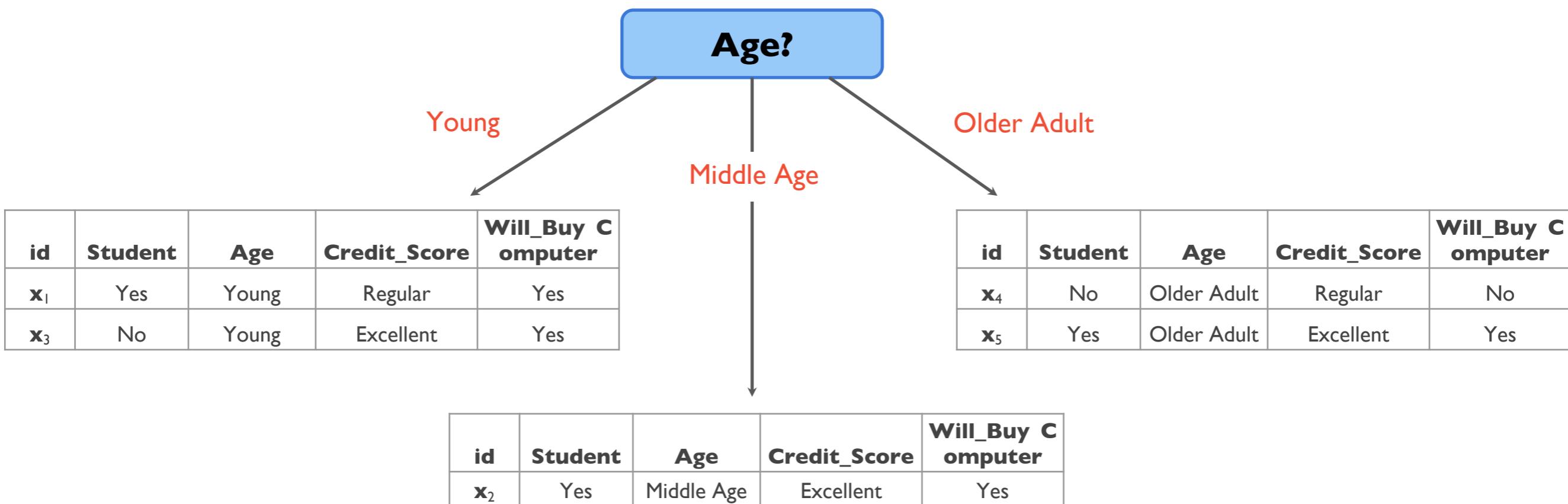
Divide-and-Conquer over data instances

<i>id</i>	<i>Student</i>	<i>Age</i>	<i>Credit_Score</i>	<i>Will_Buy_Computer</i>
<i>x₁</i>	Yes	Young	Regular	Yes
<i>x₂</i>	Yes	Middle Age	Excellent	Yes
<i>x₃</i>	No	Young	Excellent	No
<i>x₄</i>	No	Older Adult	Regular	No
<i>x₅</i>	Yes	Older Adult	Excellent	Yes

Decision Trees

Divide-and-Conquer over data instances

id	Student	Age	Credit_Score	Will_Buy_Computer
x_1	Yes	Young	Regular	Yes
x_2	Yes	Middle Age	Excellent	Yes
x_3	No	Young	Excellent	No
x_4	No	Older Adult	Regular	No
x_5	Yes	Older Adult	Excellent	Yes



Learning a Decision Tree

- How to train a decision tree that correctly classifies these examples?

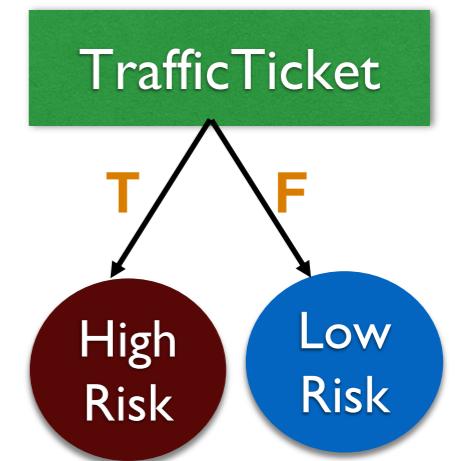
Name	Age	Gender	TrafficTicket	Class: High-Risk Driver
John	43	M	Yes	High Risk
Peter	18	M	No	Low Risk
Anna	35	F	No	Low Risk
Paula	19	F	No	Low Risk
Mark	90	M	Yes	High Risk
Marisa	19	F	Yes	High Risk
Bob	30	M	No	Low Risk

Which attribute to test to determine a driver's label/class?

Learning a Decision Tree

- How to train a decision tree that correctly classifies these examples?

Name	Age	Gender	TrafficTicket	Class: High-Risk Driver
John	43	M	Yes	High Risk
Peter	18	M	No	Low Risk
Anna	35	F	No	Low Risk
Paula	19	F	No	Low Risk
Mark	90	M	Yes	High Risk
Marisa	19	F	Yes	High Risk
Bob	30	M	No	Low Risk



Which attribute to test to determine a driver's label/class?

Learning a Decision Tree

- How to train a decision tree that correctly classifies these examples?

Name	Age	Gender	TrafficTicket	Class: High-Risk Driver
John	43	M	Yes	High Risk
Peter	18	M	No	Low Risk
Anna	35	F	No	Low Risk
Paula	19	F	No	Low Risk
Mark	90	M	Yes	High Risk
Marisa	19	F	Yes	High Risk
Bob	30	M	No	Low Risk

But what if the training set is not so “well behaved”?

Learning a Decision Tree

- How to train a decision tree that correctly classifies these examples?

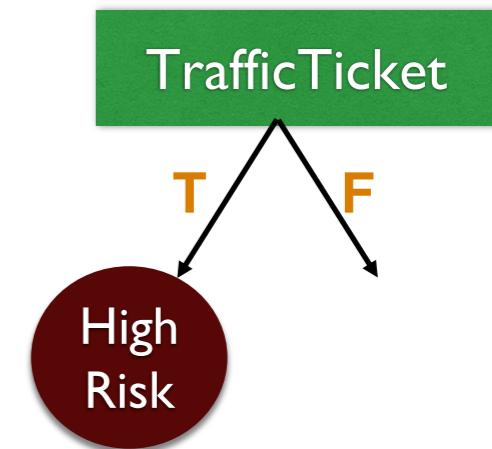
Name	Age	Gender	TrafficTicket	Class: High-Risk Driver
John	43	M	Yes	High Risk
Peter	18	M	No	High Risk
Anna	35	F	No	Low Risk
Paula	19	F	No	High Risk
Mark	90	M	Yes	High Risk
Marisa	19	F	Yes	High Risk
Bob	30	M	No	Low Risk

But what if the training set is not so “well behaved”?

Learning a Decision Tree

- How to train a decision tree that correctly classifies these examples?

Name	Age	Gender	TrafficTicket	Class: High-Risk Driver
John	43	M	Yes	High Risk
Peter	18	M	No	High Risk
Anna	35	F	No	Low Risk
Paula	19	F	No	High Risk
Mark	90	M	Yes	High Risk
Marisa	19	F	Yes	High Risk
Bob	30	M	No	Low Risk

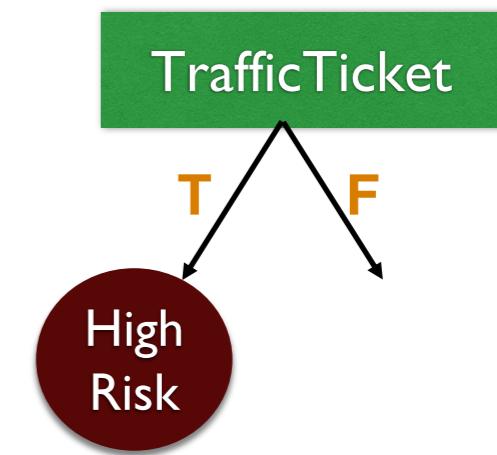


But what if the training set is not so “well behaved”?

Learning a Decision Tree

- How to train a decision tree that correctly classifies these examples?

Name	Age	Gender	TrafficTicket	Class: High-Risk Driver
John	43	M	Yes	High Risk
Peter	18	M	No	High Risk
Anna	35	F	No	Low Risk
Paula	19	F	No	High Risk
Mark	90	M	Yes	High Risk
Marisa	19	F	Yes	High Risk
Bob	30	M	No	Low Risk

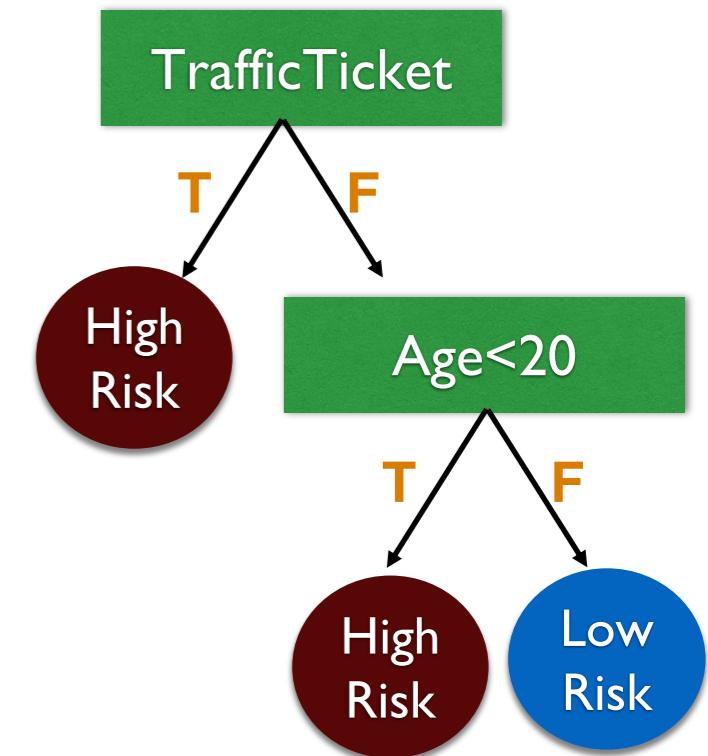


But what if the training set is not so “well behaved”?

Learning a Decision Tree

- How to train a decision tree that correctly classifies these examples?

Name	Age	Gender	TrafficTicket	Class: High-Risk Driver
John	43	M	Yes	High Risk
Peter	18	M	No	High Risk
Anna	35	F	No	Low Risk
Paula	19	F	No	High Risk
Mark	90	M	Yes	High Risk
Marisa	19	F	Yes	High Risk
Bob	30	M	No	Low Risk

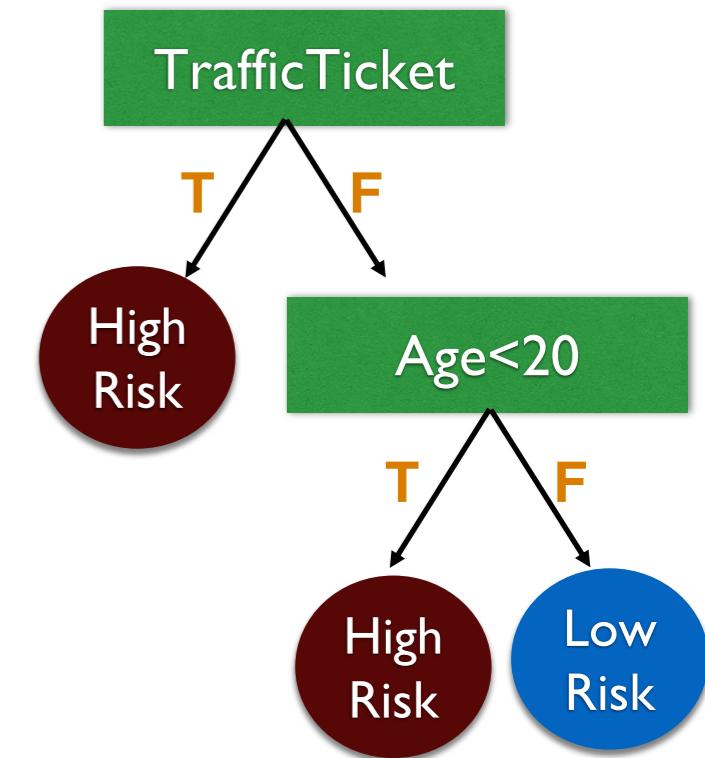


But what if the training set is not so “well behaved”?

Learning a Decision Tree

- How to train a decision tree that correctly classifies these examples?

Name	Age	Gender	TrafficTicket	Class: High-Risk Driver
John	43	M	Yes	High Risk
Peter	18	M	No	High Risk
Anna	35	F	No	Low Risk
Paula	19	F	No	High Risk
Mark	90	M	Yes	High Risk
Marisa	19	F	Yes	High Risk
Bob	30	M	No	Low Risk



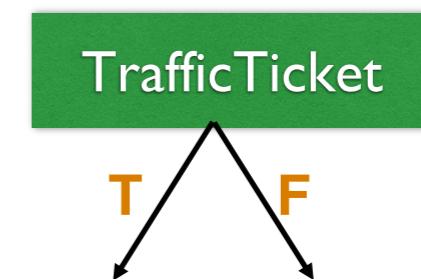
How to determine which attributes to test at each step along the tree?

Learning a Decision Tree

- **General procedure to create a decision tree**
 1. Select an attribute to add to the tree (starting from the root) → new node
 2. Add, to this node, one branch for each possible value of the selected attribute
 3. Partition the instances/examples — assign each instance to its corresponding branch, based on the value of that instance's attribute
 4. Repeat these steps, recursively, for each resulting partition (i.e., for each children node)

Name	Age	Gender	TrafficTicket	Class: High-Risk Driver
John	43	M	Yes	High Risk
Peter	18	M	No	High Risk
Anna	35	F	No	Low Risk
Paula	19	F	No	High Risk
Mark	90	M	Yes	High Risk
Marisa	19	F	Yes	High Risk
Bob	30	M	No	Low Risk

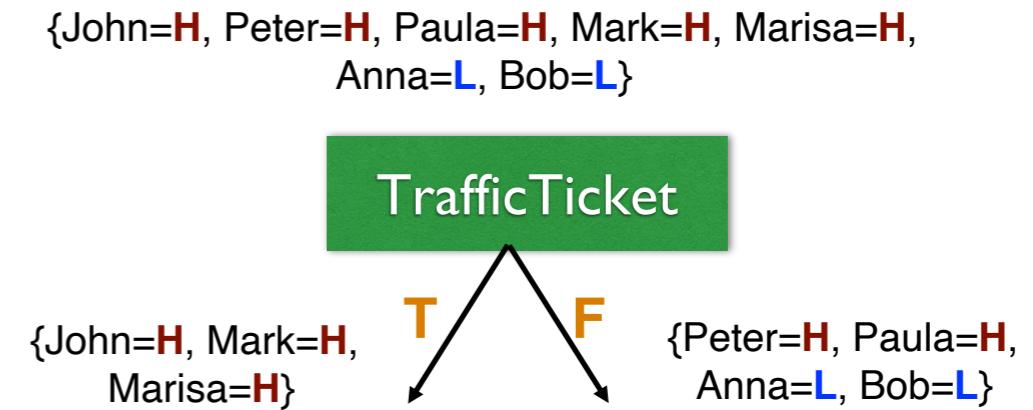
{John=H, Peter=H, Paula=H, Mark=H, Marisa=H, Anna=L, Bob=L}



Learning a Decision Tree

- **General procedure to create a decision tree**
 1. Select an attribute to add to the tree (starting from the root) → new node
 2. Add, to this node, one branch for each possible value of the selected attribute
 3. Partition the instances/examples — assign each instance to its corresponding branch, based on the value of that instance's attribute
 4. Repeat these steps, recursively, for each resulting partition (i.e., for each children node)

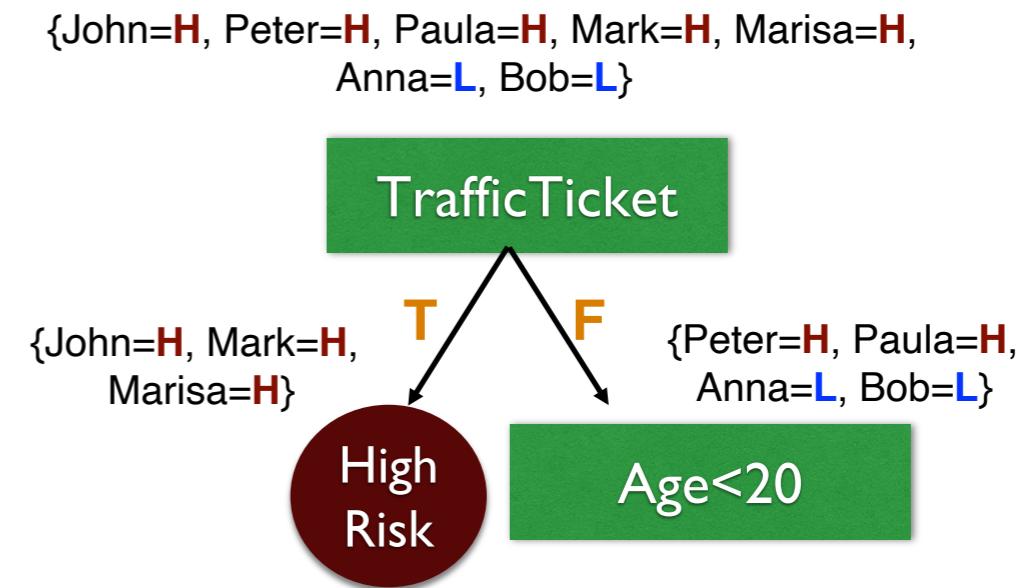
Name	Age	Gender	TrafficTicket	Class: High-Risk Driver
John	43	M	Yes	High Risk
Peter	18	M	No	High Risk
Anna	35	F	No	Low Risk
Paula	19	F	No	High Risk
Mark	90	M	Yes	High Risk
Marisa	19	F	Yes	High Risk
Bob	30	M	No	Low Risk



Learning a Decision Tree

- **General procedure to create a decision tree**
 1. Select an attribute to add to the tree (starting from the root) → new node
 2. Add, to this node, one branch for each possible value of the selected attribute
 3. Partition the instances/examples — assign each instance to its corresponding branch, based on the value of that instance's attribute
 4. Repeat these steps, recursively, for each resulting partition (i.e., for each children node)

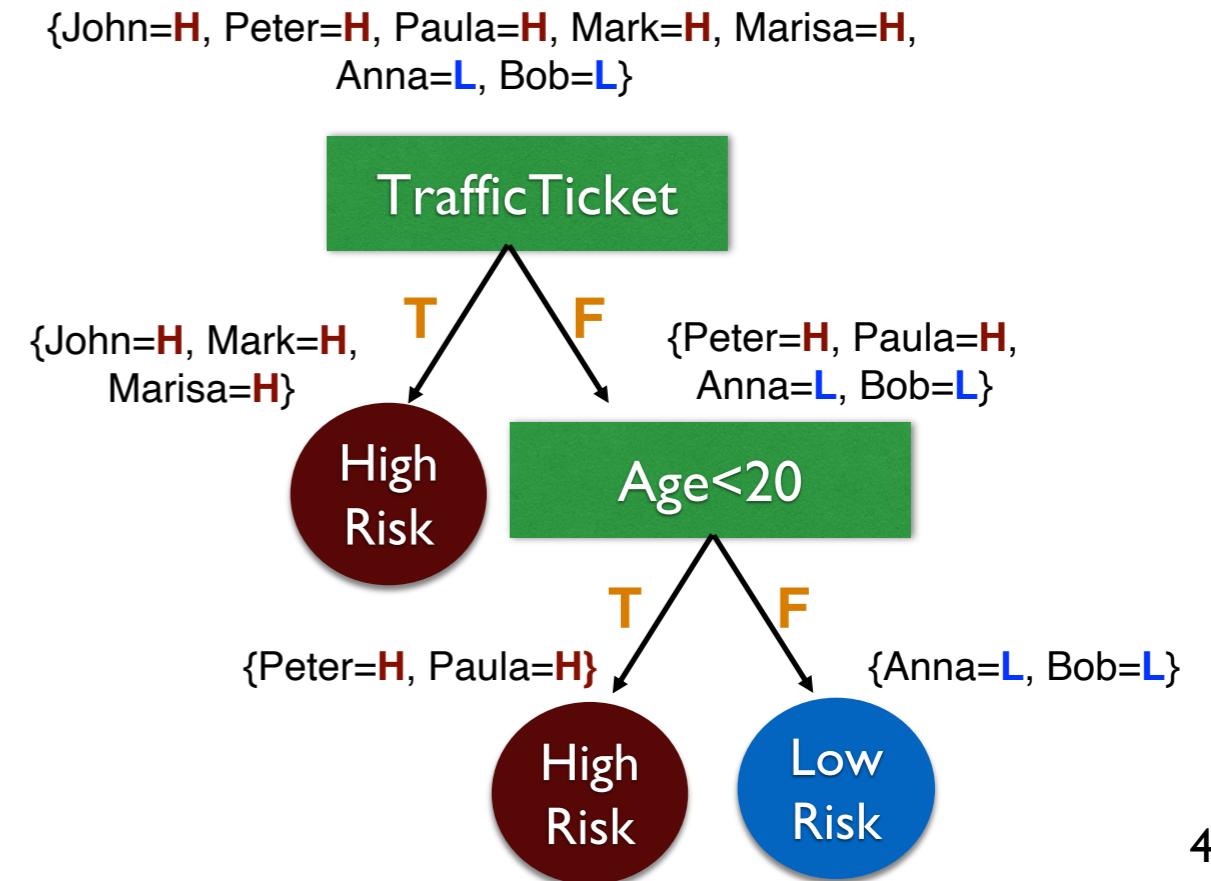
Name	Age	Gender	TrafficTicket	Class: High-Risk Driver
John	43	M	Yes	High Risk
Peter	18	M	No	High Risk
Anna	35	F	No	Low Risk
Paula	19	F	No	High Risk
Mark	90	M	Yes	High Risk
Marisa	19	F	Yes	High Risk
Bob	30	M	No	Low Risk



Learning a Decision Tree

- General procedure to create a decision tree
 1. Select an attribute to add to the tree (starting from the root) → new node
 2. Add, to this node, one branch for each possible value of the selected attribute
 3. Partition the instances/examples — assign each instance to its corresponding branch, based on the value of that instance's attribute
 4. Repeat these steps, recursively, for each resulting partition (i.e., for each children node)

Name	Age	Gender	TrafficTicket	Class: High-Risk Driver
John	43	M	Yes	High Risk
Peter	18	M	No	High Risk
Anna	35	F	No	Low Risk
Paula	19	F	No	High Risk
Mark	90	M	Yes	High Risk
Marisa	19	F	Yes	High Risk
Bob	30	M	No	Low Risk



Learning a Decision Tree

- **General procedure to create a decision tree**
 1. Select an attribute to add to the tree (starting from the root) → new node
 2. Add, to this node, one branch for each possible value of the selected attribute
 3. Partition the instances/examples — assign each instance to its corresponding branch, based on the value of that instance's attribute
 4. Repeat these steps, recursively, for each resulting partition (i.e., for each children node)

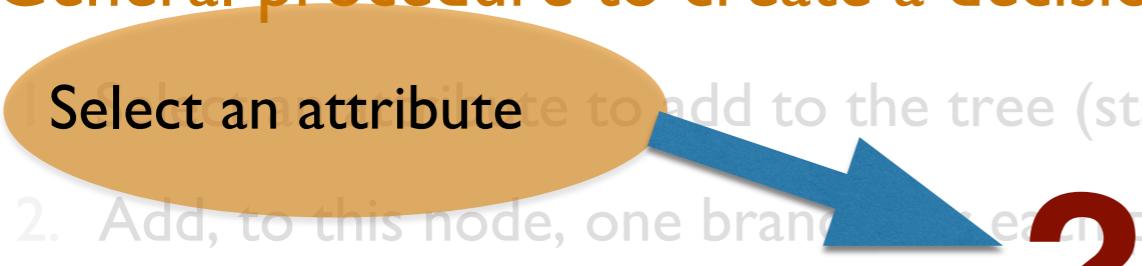
When to stop?

- a. When all instances of a given partition/node belong to the same class
Then, create a leaf node labeled with that class
- b. When there are no more attributes that can be tested
or
When a partition is empty (i.e., there are no instances associated with it)
Then, create a leaf node labeled with the majority class among the instances

Learning a Decision Tree

- **General procedure to create a decision tree**

Select an attribute



1. Select an attribute to add to the tree (starting from the root) → new node
2. Add, to this node, one branch for each possible value of the selected attribute
3. Partition the instances/examples — assign each instance to its corresponding branch, based on the value of that instance's attribute
4. Repeat these steps, recursively, for each resulting partition (i.e., for each children node)

When to stop?

- a. When all instances of a given partition/node belong to the same class
Then, create a leaf node labeled with that class
- b. When there are no more attributes that can be tested
or
When a partition is empty (i.e., there are no instances associated with it)
Then, create a leaf node labeled with the majority class among the instances

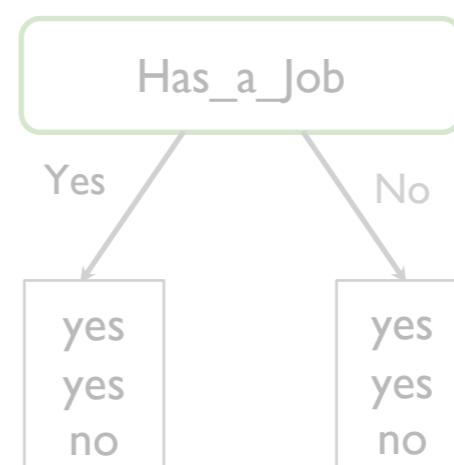
Selecting an Attribute to Test

- **Criterion/heuristic** for selecting which attribute to test
 - Most informative attribute
 - attribute that best splits instances according to their classes
 - Ideally, we should select an attribute such that
 - “all instances of class A go to one branch, all instances of class B to the other branch”
 - i.e., attribute that results in partitions whose instances are as homogenous as possible
 - all instances in that partition belong to the same class (in that case, add new leaf node)

“Good_Credit_Score?” seems to be more informative than “Has_a_Job”

Selecting an Attribute to Test

- Criterion/heuristic for selecting which attribute to test
 - Most informative attribute
 - attribute that best splits instances according to their classes
 - Ideally, we should select an attribute such that
 - “all instances of class A go to one branch, all instances of class B to the other branch”
 - i.e., attribute that results in partitions whose instances are as homogenous as possible
 - all instances in that partition belong to the same class (in that case, add new leaf node)



“Goodness of Split”

“Good_Credit_Score?” seems to be more informative than “Has_a_Job”

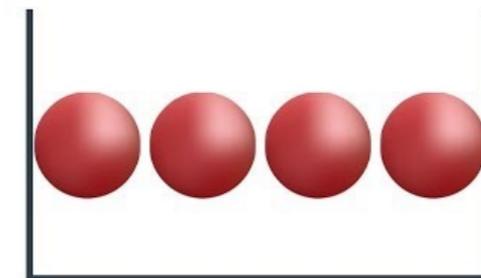
Selecting an Attribute to Test

- Ideally, we should select an attribute such that
 - “all instances of class A go to one branch, all instances of class B to the other branch”
 - i.e., attribute that results in partitions whose instances are as homogenous as possible
- How to quantify how homogenous a set of instances is?
 - **Information, or entropy**
 - Information is measured in bits (or fractions of a bit)

Let's suppose we test Age, and the instances associated with Age=Young look like this

Will repay loan

Will not repay loan



Was that a useful attribute to test?

Do we have a good idea about whether
the person is going to repay the loan or not?

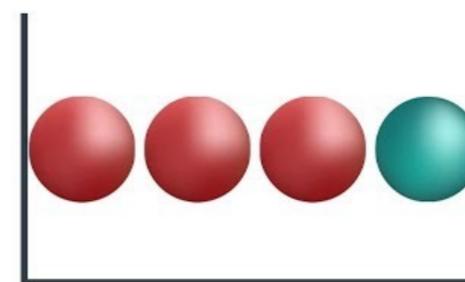
Selecting an Attribute to Test

- Ideally, we should select an attribute such that
 - “all instances of class A go to one branch, all instances of class B to the other branch”
 - i.e., attribute that results in partitions whose instances are as homogenous as possible
- How to quantify how homogenous a set of instances is?
 - **Information, or entropy**
 - Information is measured in bits (or fractions of a bit)

Let's suppose we test Age, and the instances associated with Age=Young look like this

Will repay loan

Will not repay loan



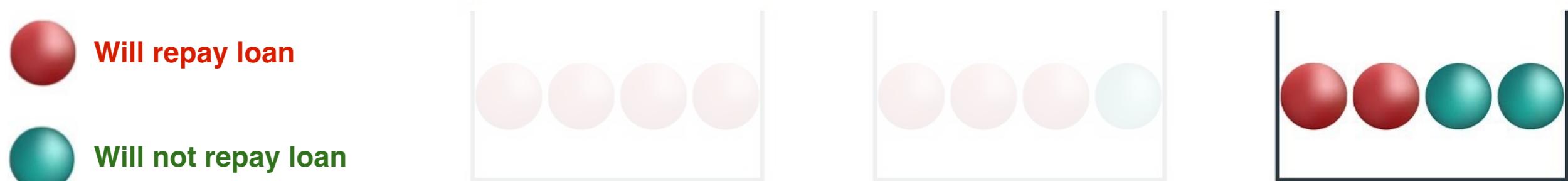
Was that a useful attribute to test?

Do we have a good idea about whether
the person is going to repay the loan or not?

Selecting an Attribute to Test

- Ideally, we should select an attribute such that
 - “all instances of class A go to one branch, all instances of class B to the other branch”
 - i.e., attribute that results in partitions whose instances are as homogenous as possible
- How to quantify how homogenous a set of instances is?
 - **Information, or entropy**
 - Information is measured in bits (or fractions of a bit)

Let's suppose we test Age, and the instances associated with Age=Young look like this



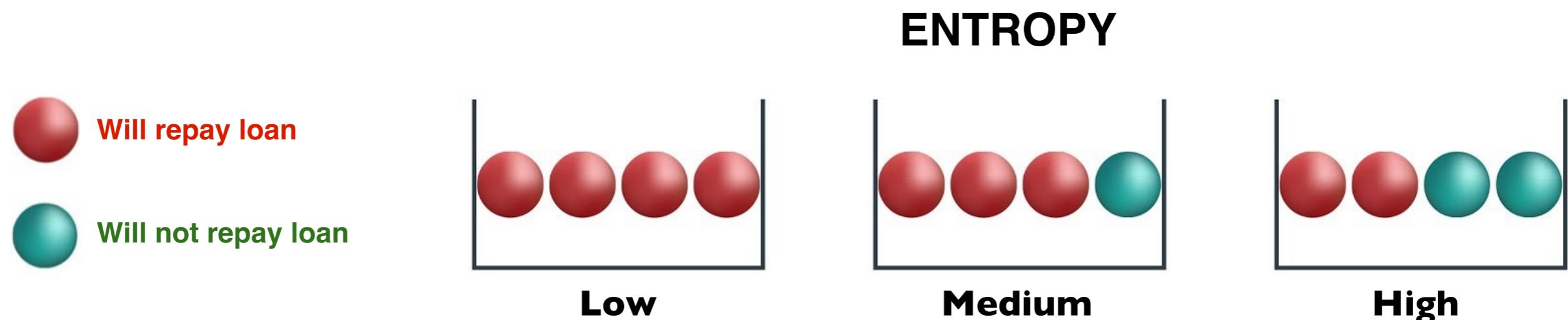
Was that a useful attribute to test?

Do we have a good idea about whether the person is going to repay the loan or not?

Selecting an Attribute to Test

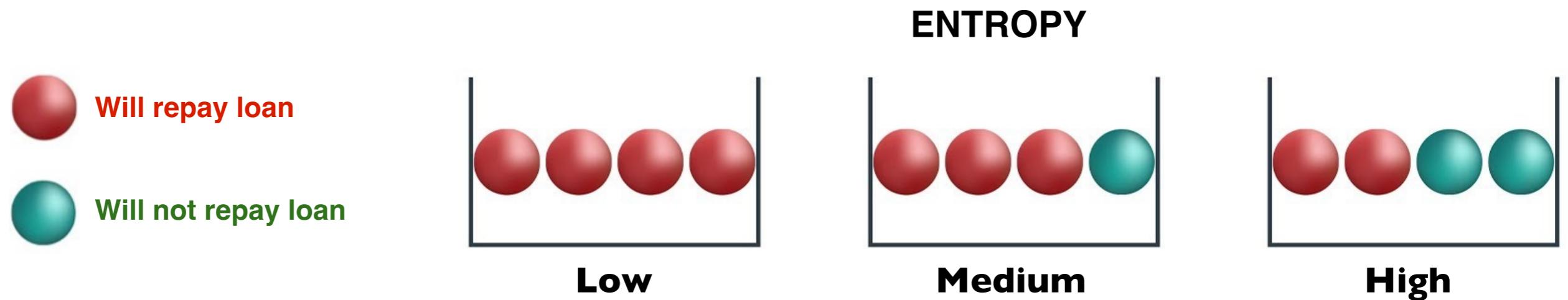
- Ideally, we should select an attribute such that
 - “all instances of class A go to one branch, all instances of class B to the other branch”
 - i.e., attribute that results in partitions whose instances are as homogenous as possible
- How to quantify how homogenous a set of instances is?
 - **Information, or entropy**
 - Information is measured in bits (or fractions of a bit)

Let's suppose we test Age, and the instances associated with Age=Young look like this



Selecting an Attribute to Test

- How to quantify how homogenous a set of instances is?
 - **Information, or entropy**
 - Information is measured in bits (or fractions of a bit)



- Intuitively, quantifies how random a given quantity (e.g., class) is within a dataset
- Associated with how hard it is to predict the class based on an attribute
- Higher entropy
 - instances of a same class are all mixed up
 - testing the attribute that resulted in that partition of the data was not very useful

Selecting an Attribute to Test

- How to quantify how homogenous a set of instances is?
 - **Information, or entropy**
 - Information is measured in bits (or fractions of a bit)
- Given a distribution of labels/classes in a partition of the data
 - how much information is required to predict the class
 - this is the *entropy* of that distribution

$$\rightarrow I(p_1, p_2, \dots, p_n) = -p_1 \log_2(p_1) - p_2 \log_2(p_2) \dots - p_n \log_2(p_n)$$

{John=**H**, Peter=**H**, Paula=**H**, Mark=**H**, Marisa=**H**,
Anna=**L**, Bob=**L**}

Selecting an Attribute to Test

- How to quantify how homogenous a set of instances is?
 - **Information, or entropy**
 - Information is measured in bits (or fractions of a bit)
- Given a distribution of labels/classes in a partition of the data
 - how much information is required to predict the class
 - this is the *entropy* of that distribution

$$\rightarrow I(p_1, p_2, \dots, p_n) = -p_1 \log_2(p_1) - p_2 \log_2(p_2) \dots - p_n \log_2(p_n)$$

Probability that class #1 (**H**) appears in the partition of the data

{John=**H**, Peter=**H**, Paula=**H**, Mark=**H**, Marisa=**H**, Anna=**L**, Bob=**L**}

Selecting an Attribute to Test

- How to quantify how homogenous a set of instances is?
 - **Information, or entropy**
 - Information is measured in bits (or fractions of a bit)
- Given a distribution of labels/classes in a partition of the data
 - how much information is required to predict the class
 - this is the *entropy* of that distribution

$$\rightarrow I(p_1, p_2, \dots, p_n) = -p_1 \log_2(p_1) - p_2 \log_2(p_2) \dots - p_n \log_2(p_n)$$

Probability that class #2 (**L**)
appears in the partition of the data

{John=**H**, Peter=**H**, Paula=**H**, Mark=**H**, Marisa=**H**,
Anna=**L**, Bob=**L**}

Selecting an Attribute to Test

- How to quantify how homogenous a set of instances is?
 - **Information, or entropy**
 - Information is measured in bits (or fractions of a bit)

- Given a distribution of labels/classes in a partition of the data

- how much information is required to predict the class
- this is the *entropy* of that distribution

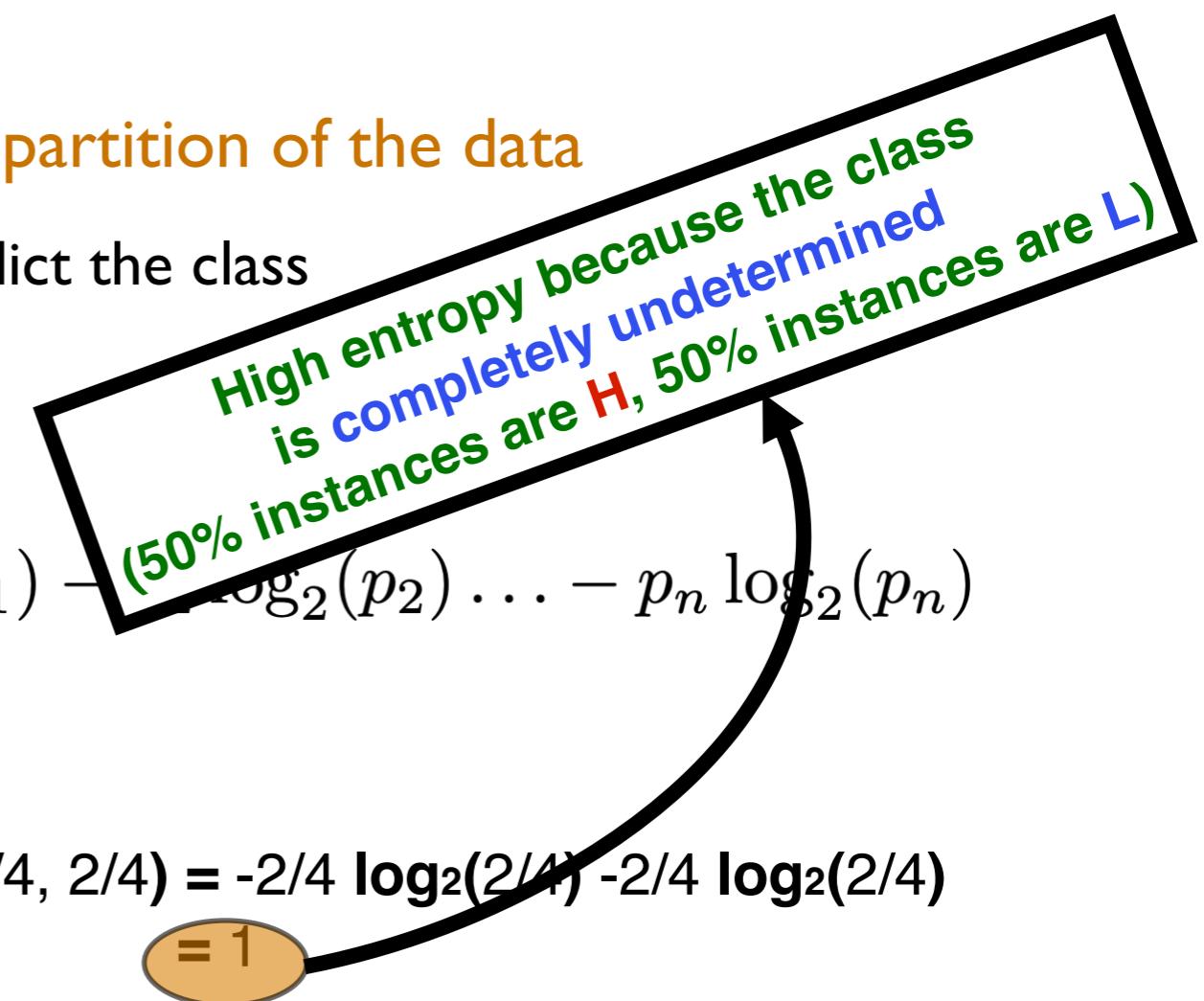
$$\rightarrow I(p_1, p_2, \dots, p_n) = -p_1 \log_2(p_1) - p_2 \log_2(p_2) \dots - p_n \log_2(p_n)$$

{John=**H**, Peter=**H**,
Anna=**L**, Bob=**L**}

$$\Pr(\mathbf{H}) = 2/4$$
$$\Pr(\mathbf{L}) = 2/4$$

$$I(2/4, 2/4) = -2/4 \log_2(2/4) - 2/4 \log_2(2/4)$$

$$= 1$$



Selecting an Attribute to Test

- How to quantify how homogenous a set of instances is?
 - **Information, or entropy**
 - Information is measured in bits (or fractions of a bit)

- Given a distribution of labels/classes in a partition of the data

- how much information is required to predict the class
- this is the *entropy* of that distribution

$$\rightarrow I(p_1, p_2, \dots, p_n) = -p_1 \log_2(p_1) - p_2 \log_2(p_2) \dots - p_n \log_2(p_n)$$

{John=H, Peter=H}

$$\begin{aligned} \Pr(\text{H}) &= 2/2 \\ \Pr(\text{L}) &= 0/2 \end{aligned}$$

$$I(2/2, 0/2) = -2/2 \log_2(2/2) - 0/2 \log_2(0/2)$$

$$= 0$$

Low entropy because the class is completely determined (100% instances are H!)

Selecting an Attribute to Test

- How to quantify how homogenous a set of instances is?
 - **Information, or entropy**
 - Information is measured in bits (or fractions of a bit)
- Given a distribution of labels/classes in a partition of the data
 - how much information is required to predict the class
 - this is the *entropy* of that distribution

$$\rightarrow I(p_1, p_2, \dots, p_n) = -p_1 \log_2(p_1) - p_2 \log_2(p_2) \dots - p_n \log_2(p_n)$$

{John=A, Peter=A, Paula=A, Mark=A, Marisa=A,
Anna=B, Bob=B}

$$\Pr(A) = 5/7$$

$$\Pr(B) = 2/7$$

$$\begin{aligned} I(5/7, 2/7) &= -5/7 \log_2(5/7) - 2/7 \log_2(2/7) \\ &= 0.8631 \end{aligned}$$

“Medium” entropy because the class is almost determined (almost sure it is H, but there’s still some uncertainty)

Selecting an Attribute to Test

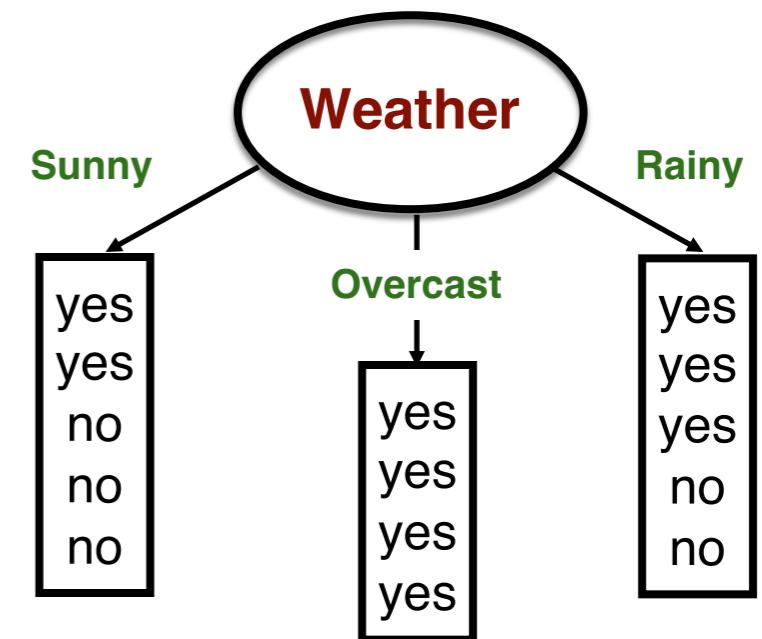
- Decision tree to predict whether a person will play tennis

Weather	Temperature	Humidity	Windy	PlayTennis
Sunny	Hot	High	False	No
Sunny	Hot	High	True	No
Overcast	Hot	High	False	Yes
Rainy	Mild	High	False	Yes
Rainy	Cool	Normal	False	Yes
Rainy	Cool	Normal	True	No
Overcast	Cool	Normal	True	Yes
Sunny	Mild	High	False	No
Sunny	Cool	Normal	False	Yes
Rainy	Mild	Normal	False	Yes
Sunny	Mild	Normal	True	Yes
Overcast	Mild	High	True	Yes
Overcast	Hot	Normal	False	Yes
Rainy	Mild	High	True	No

- Which attribute to test first?
- Let's consider testing **Weather**

Original dataset: 9 instances "Yes"
5 instances "No"

yes yes yes yes yes yes yes yes
no no no no no



Selecting an Attribute to Test

- Decision tree to predict whether a person will play tennis
- Entropy of the original dataset:
 - $I(9/14, 5/14) = -9/14 \log_2(9/14) -5/14 \log_2(5/14) = 0.940 \text{ bits}$
- Entropy of partitions resulting from testing Weather:
 - Weather=Sunny
 - $I(2/5, 3/5) = -2/5 \log_2(2/5) -3/5 \log_2(3/5) = 0.971 \text{ bits}$
 - Weather=Overcast
 - $I(4/4, 0/4) = -4/4 \log_2(4/4) -0/4 \log_2(0/4) = 0 \text{ bits}$
 - Weather=Rainy
 - $I(3/5, 2/5) = -3/5 \log_2(3/5) -2/5 \log_2(2/5) = 0.971 \text{ bits}$
- Average entropy of the resulting partitions
 - $(5/14) \times 0.971 + (4/14) \times 0 + (5/14) \times 0.971 = 0.693 \text{ bits}$

- Which attribute to test first?
- Let's consider testing Weather

Original dataset: 9 instances "Yes" 5 instances "No"

yes								
no								

```
graph TD; Weather([Weather]) -- Sunny --> SunnyNode["yes  
yes  
no  
no"]; Weather -- Rainy --> RainyNode["yes  
yes  
no  
no"]; Weather -- Overcast --> OvercastNode["yes  
yes  
yes  
yes"]
```

Selecting an Attribute to Test

- Decision tree to predict whether a person will play tennis

- Entropy of the original dataset:**

- $I(9/14, 5/14) = -9/14 \log_2(9/14) - 5/14 \log_2(5/14) = 0.940 \text{ bits}$

- Entropy of partitions resulting from testing Weather:**

- Weather=Sunny**

- $I(2/5, 3/5) = -2/5 \log_2(2/5) - 3/5 \log_2(3/5) = 0.971 \text{ bits}$

- Weather=Overcast**

- $I(4/4, 0/4) = -4/4 \log_2(4/4) - 0/4 \log_2(0/4) = 0 \text{ bits}$

- Weather=Rainy**

- $I(3/5, 2/5) = -3/5 \log_2(3/5) - 2/5 \log_2(2/5) = 0.971 \text{ bits}$

- Average entropy of the resulting partitions**

- $(5/14) \times 0.971 + (4/14) \times 0 + (5/14) \times 0.971 = 0.693 \text{ bits}$

By testing the attribute **Weather**, the entropy of the classes decreased by $0.940 - 0.693 = 0.247 \text{ bits}$

Information Gain

- quantifies how much information about the class is obtained by testing a given attribute

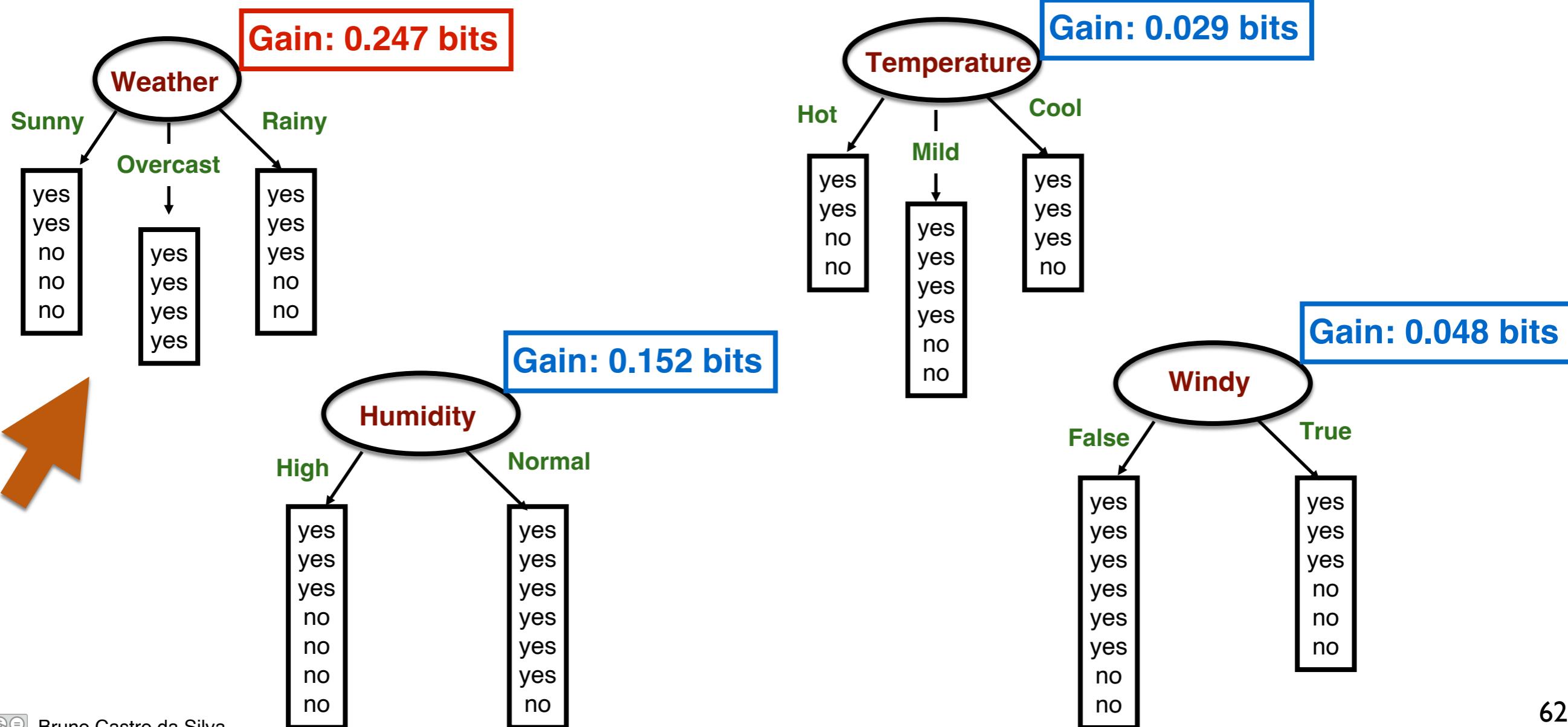
The algorithm will test, first, the attributes that result in higher information gain

Selecting an Attribute to Test

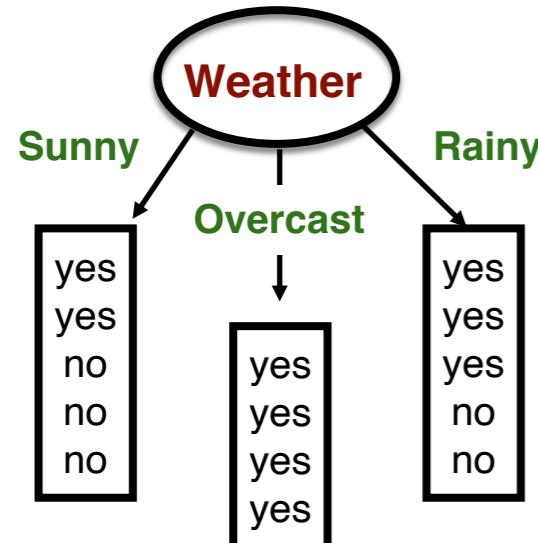
Information Gain

- quantifies how much information about the class is obtained by testing a given attribute

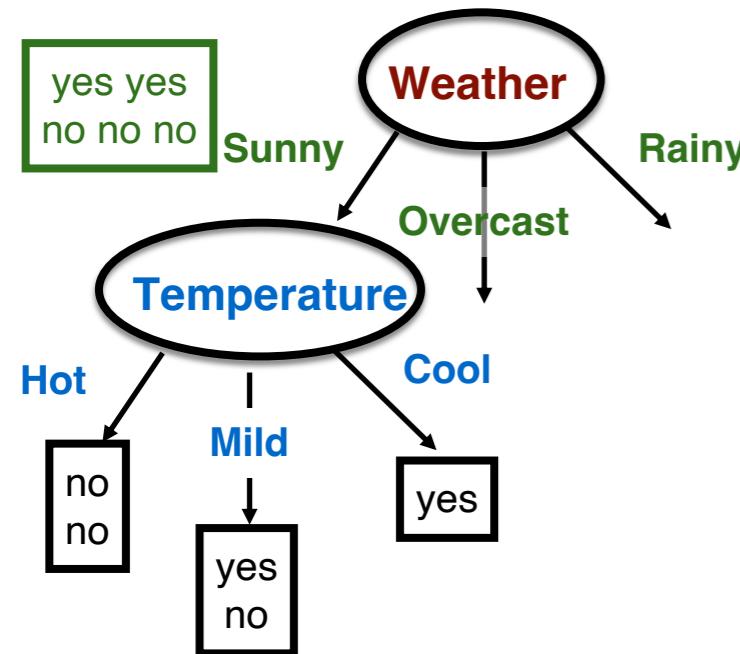
The algorithm will test, first, the attributes that result in higher information gain



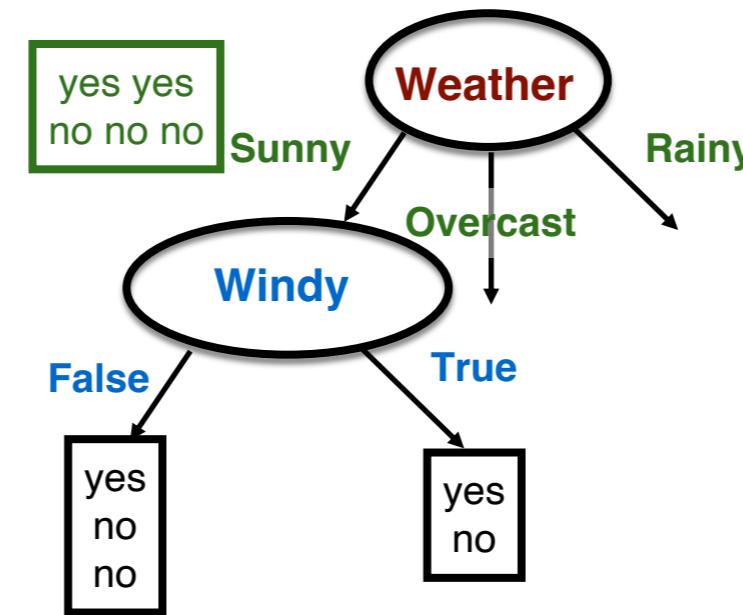
Selecting an Attribute to Test



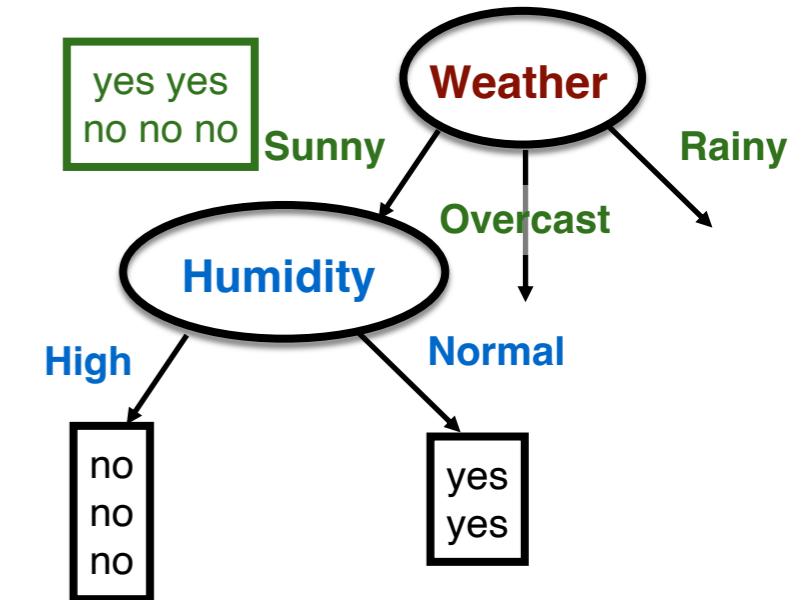
- We have decided that the 1st attribute to test is **Weather**
- What should be tested next, on the Sunny branch?
 - i.e., should we test **Temperature**, **Windy**, or **Humidity**?



Gain: 0.571 bits

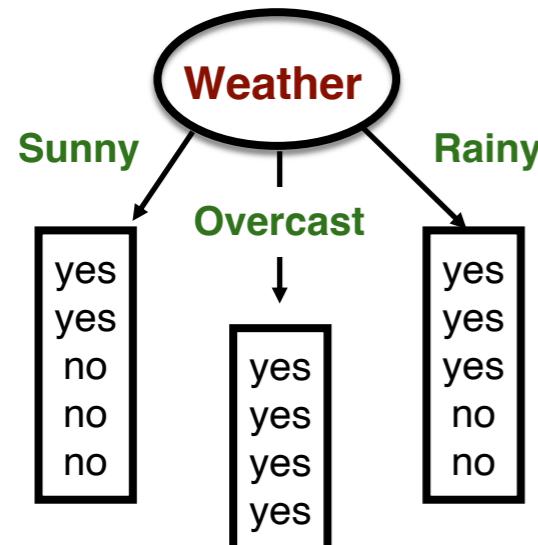


Gain: 0.020 bits

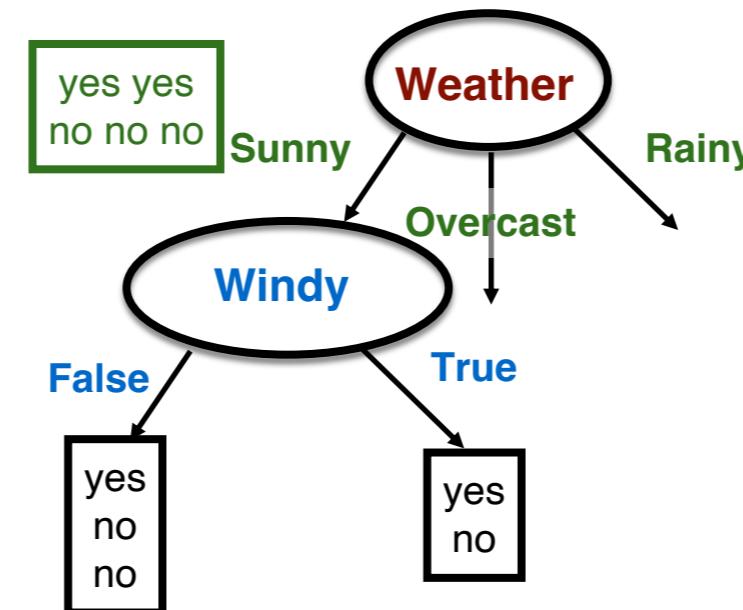
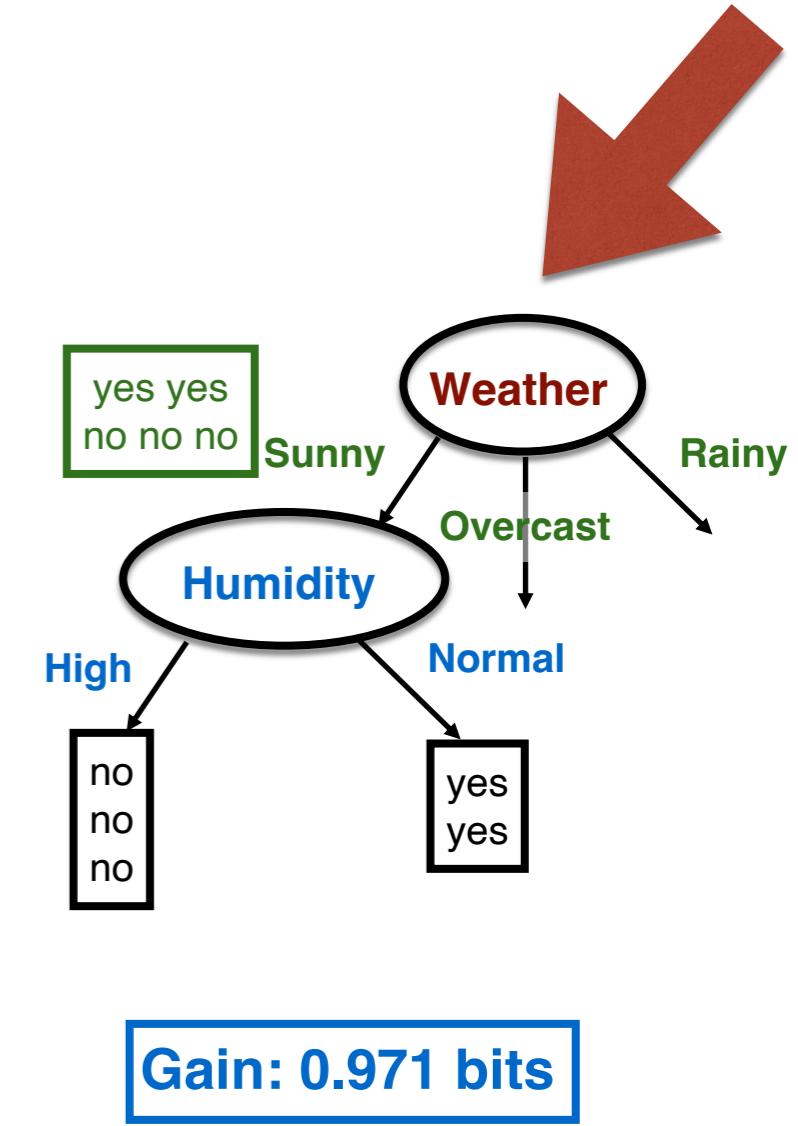


Gain: 0.971 bits

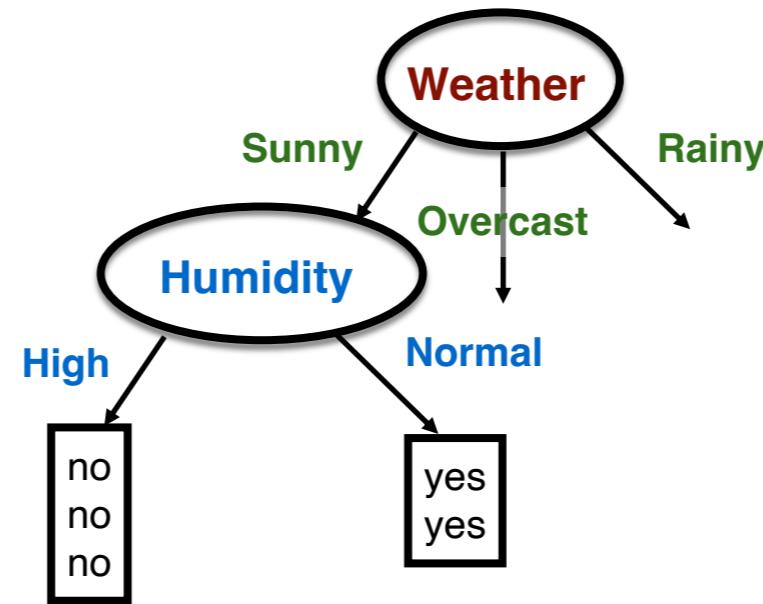
Selecting an Attribute to Test



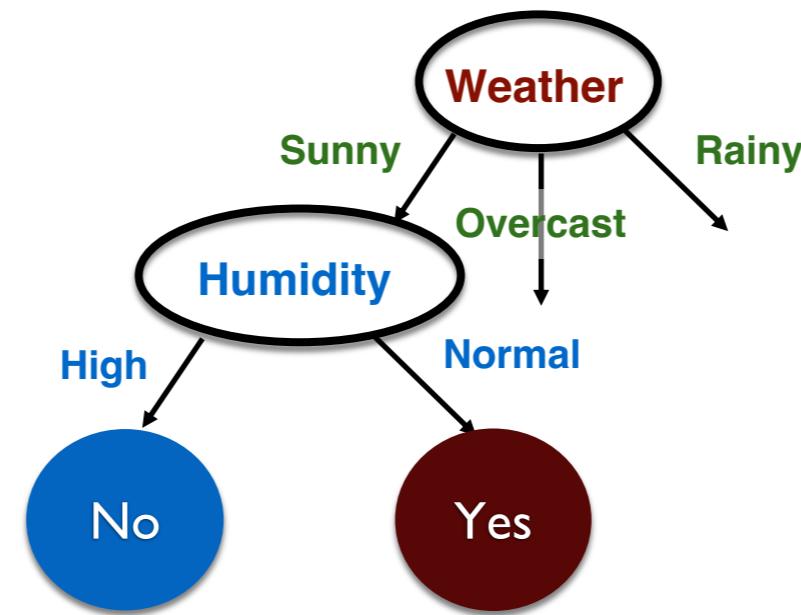
- We have decided that the 1st attribute to test is **Weather**
- What should be tested next, on the Sunny branch?
 - i.e., should we test **Temperature**, **Windy**, or **Humidity**?



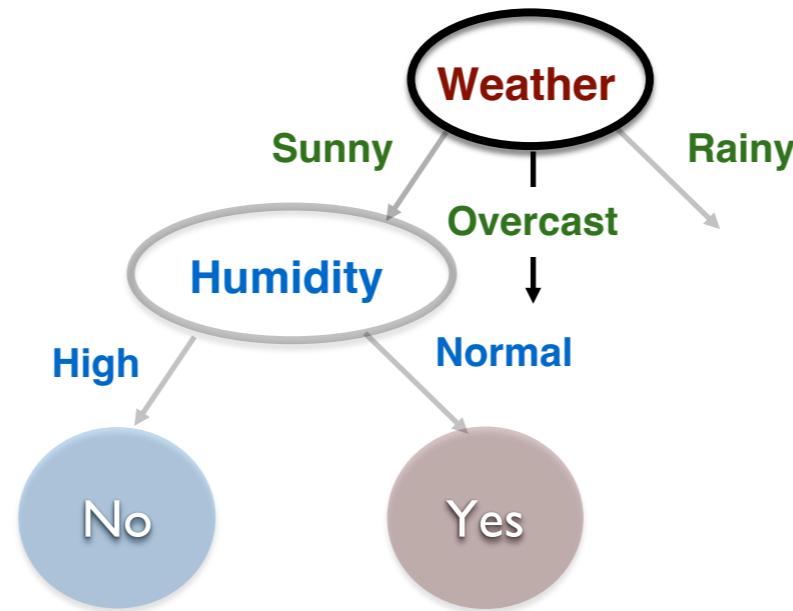
Selecting an Attribute to Test



Selecting an Attribute to Test



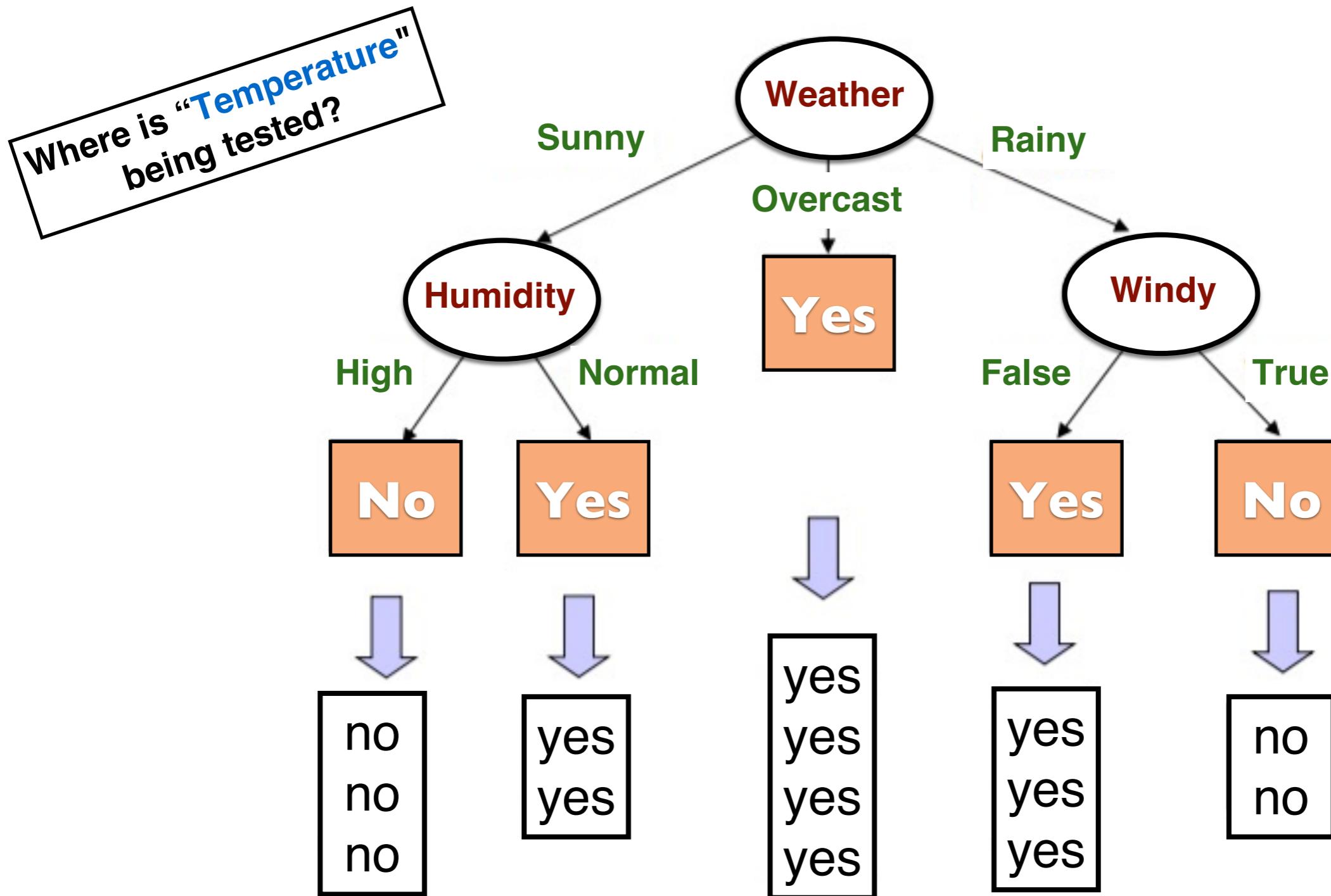
Selecting an Attribute to Test



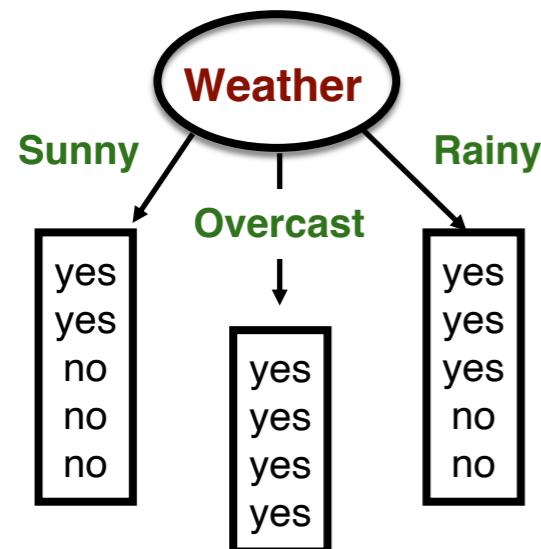
- What should be tested next, on the Overcast branch?
 - i.e., should we test Temperature, Windy, or Humidity?

Repeat the same process, recursively...

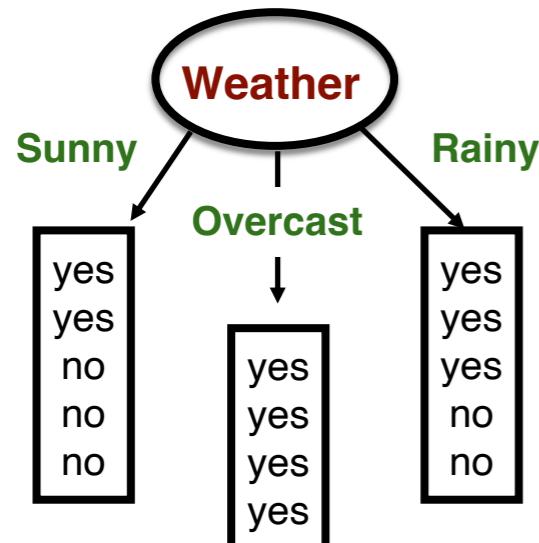
Learned Decision Tree



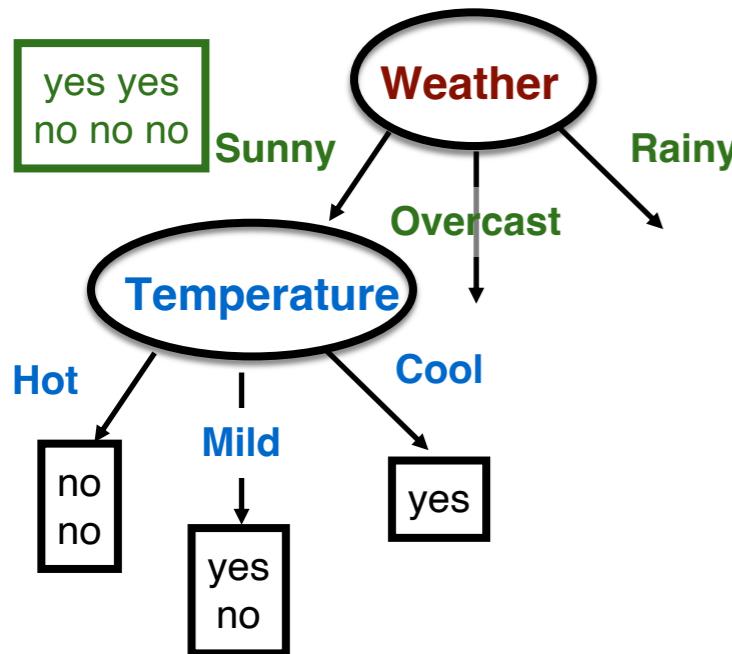
Review: Selecting an Attribute to Test



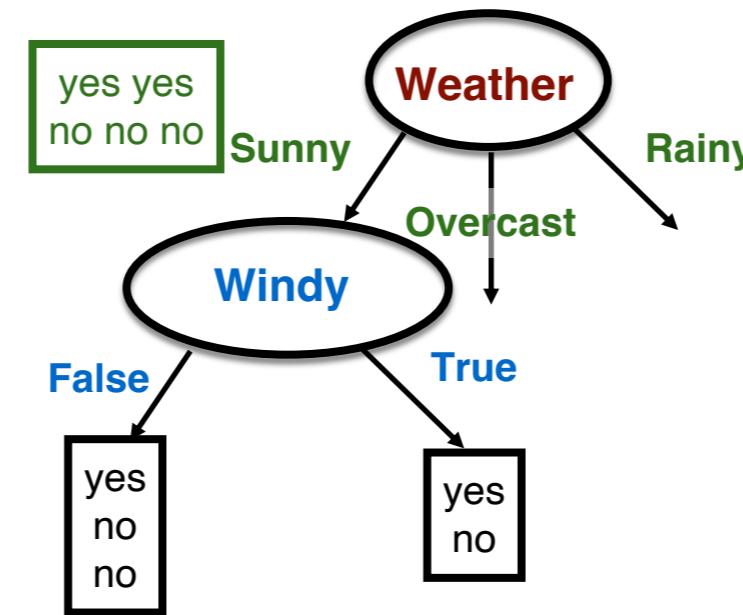
Review: Selecting an Attribute to Test



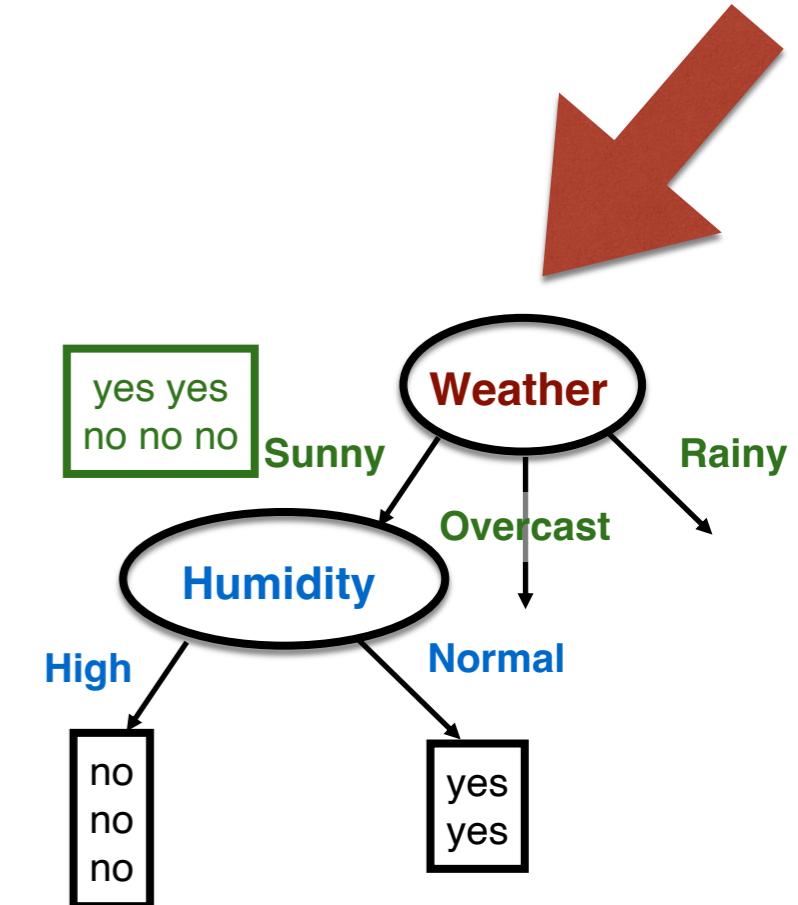
- We have decided that the 1st attribute to test is **Weather**
- What should be tested next, on the Sunny branch?
 - i.e., should we test **Temperature**, **Windy**, or **Humidity**?



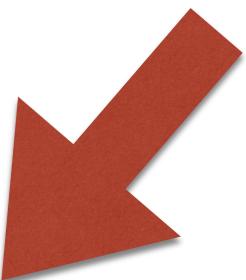
Gain: 0.571 bits



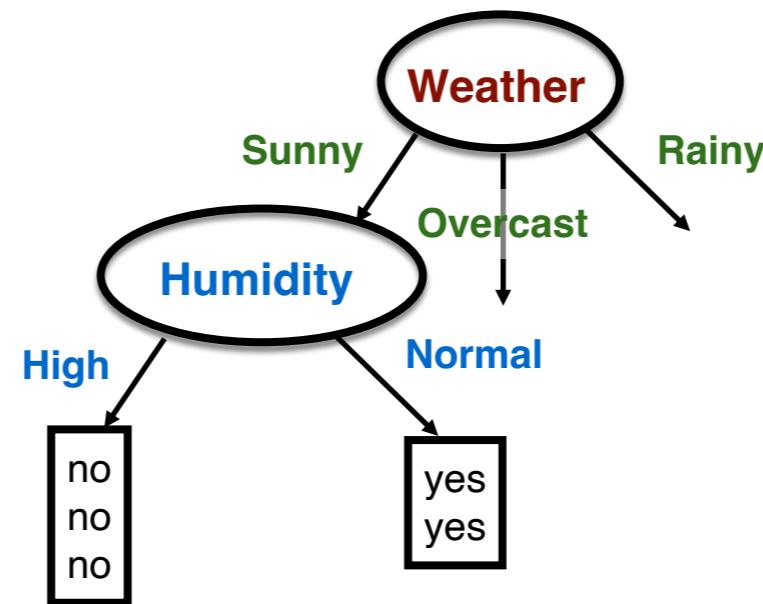
Gain: 0.020 bits



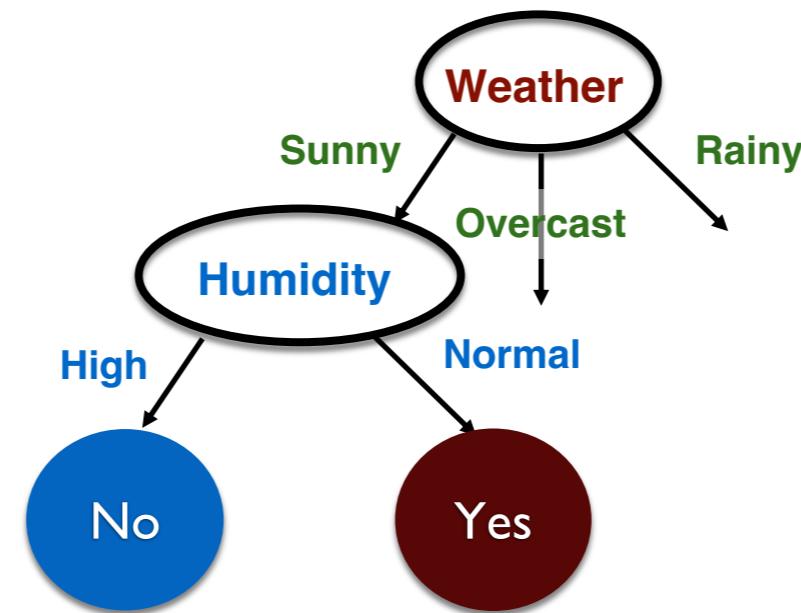
Gain: 0.971 bits



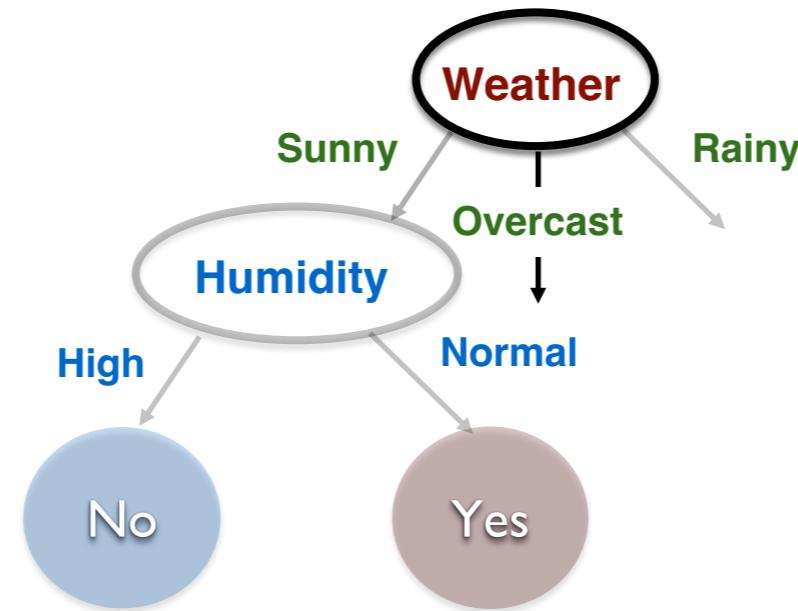
Review: Selecting an Attribute to Test



Review: Selecting an Attribute to Test



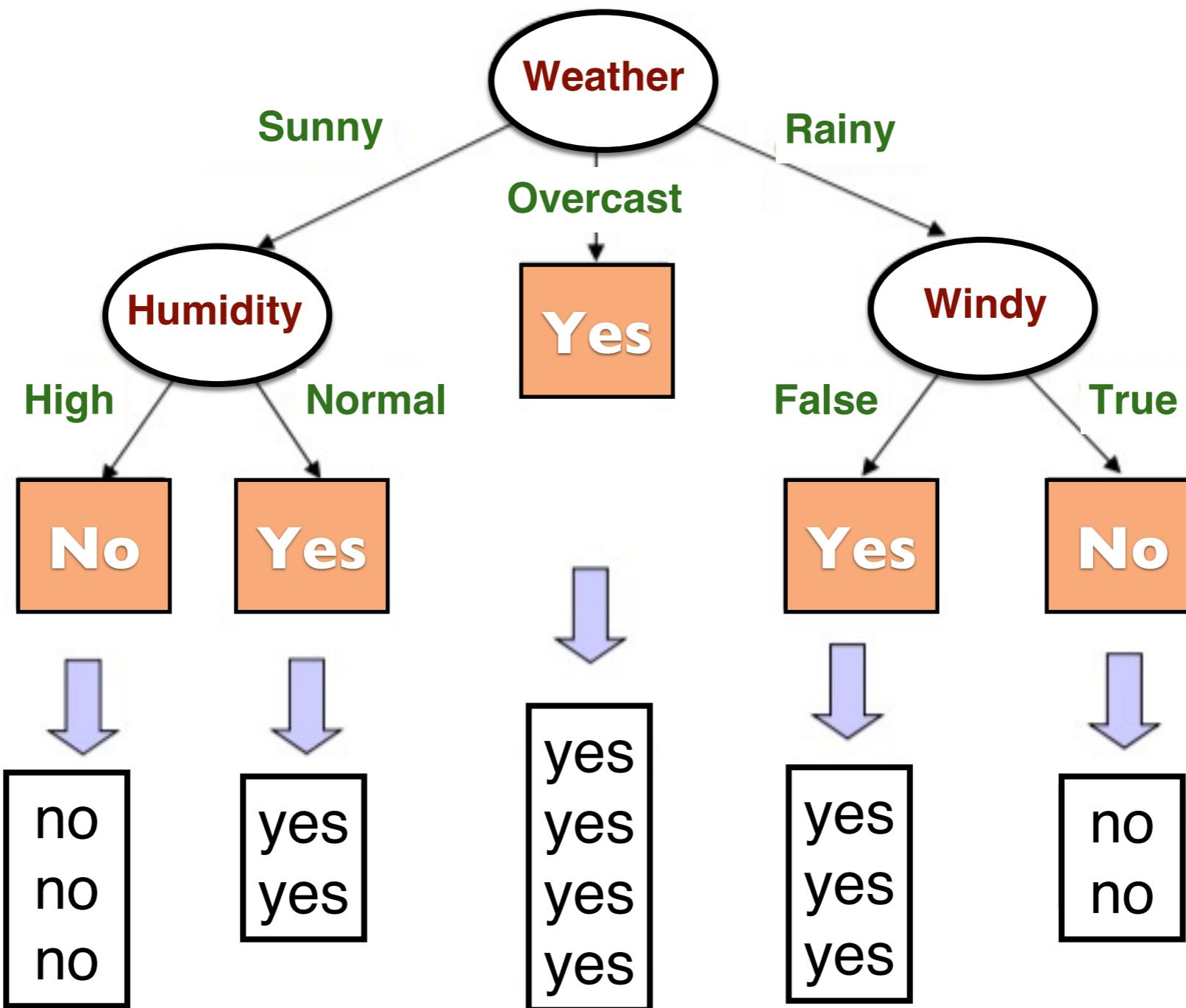
Review: Selecting an Attribute to Test



- What should be tested next, on the Overcast branch?
 - i.e., should we test Temperature, Windy, or Humidity?

Repeat the same process, recursively...

Review: Learned Decision Tree



Criteria for Selecting an Attribute to Test

- We have discussed one possible criterion for selecting which attribute to test
 - **Information Gain**
- Many other criteria have been proposed — each with different properties
- Intuitively:
 - A split that keeps the **same proportion of classes** in each partition is **useless**
 - A split where the **instances in each partition have the same class** is **useful!**

- Main criteria for selecting which attribute to test:
 - **Information Gain** - ID3 Algorithm (Quilan, 1987)
 - **Information Gain Ratio** - C4.5 Algorithm (Quilan, 1988)
 - **Gini Impurity** - CART Algorithm (Breiman, 1984)

Criteria for Selecting an Attribute to Test

- We have discussed one possible criterion for selecting which attribute to test
 - **Information Gain**
- Many other criteria have been proposed — each with different properties
- Intuitively:
 - A split that keeps the **same proportion of classes** in each partition is **useless**
 - A split where the **instances in each partition have the same class** is **useful!**

All algorithms are based on the same underlying tree-learning strategy
Differ with respect to the criterion used to select which attribute to test at each point

All are greedy algorithms: select the best attribute to use when splitting a node, and never revisit this decision (no *backtracking*)

A Decision Tree Learning algorithm

Function: `decision_tree(D, L)`

Input: A dataset $D = \{(x_1, y_1), (x_2, y_2), \dots, (x_n, y_n)\}$ with n training instances

A list, L , of attributes that can still be tested

- Create a new node, N

- If all instances in D belong to the same class, y

 Define node N as a leaf node labeled with y and return it

- If there are no more attributes that can be tested (i.e., if $L = \emptyset$)

 Define node N as a leaf node labeled with the majority class in D , and return it

*// stopping
// criteria*

- Let A be the best attribute to split the dataset D

// Select splitting attribute according to some criterion

- Define node N as a decision node that tests attribute A

- Main criteria for selecting which attribute to test:
 - **Information Gain** - ID3 Algorithm (Quilan, 1987)
 - **Information Gain Ratio** - C4.5 Algorithm (Quilan, 1988)
 - **Gini Impurity** - CART Algorithm (Breiman, 1984)

A Decision Tree Learning algorithm

Function: `decision_tree(D, L)`

Input: A dataset $D = \{(x_1, y_1), (x_2, y_2), \dots, (x_n, y_n)\}$ with n training instances

A list, L , of attributes that can still be tested

- Create a new node, N

- If all instances in D belong to the same class, y

 Define node N as a leaf node labeled with y and return it

- If there are no more attributes that can be tested (i.e., if $L = \emptyset$)

 Define node N as a leaf node labeled with the majority class in D , and return it

*// stopping
// criteria*

- Let A be the best attribute to split the dataset D

// Select splitting attribute according to some criterion

- Define node N as a decision node that tests attribute A

- Remove A from the list of attributes that can still be tested: $L := L - \{A\}$

- Let V be a list with all different values of attribute A considering the instances in dataset D

- For each attribute value $v \in V$:

- Let D_v be the partition of D containing all instances whose attribute $A = v$

- If D_v is empty

 Let T_v be a leaf node labeled with the majority class in D

- Else

 Let T_v be a sub-tree responsible for classifying the instances in D_v : $T_v := \text{decision_tree}(D_v, L)$

- Create an edge from node N to the root of T_v , where the edge is labeled with attribute value v

*// creates
// sub-trees*

- Return N

Criteria for Selecting an Attribute to Test

- We have discussed one possible criterion for selecting which attribute to test
 - **Information Gain**
- Many other criteria have been proposed — each with different properties
- Intuitively:
 - A split that keeps the **same** proportion of classes in each partition is **useless**
 - A split where the **instances** in each partition have **the same class** is **useful!**



- Main criteria for selecting which attribute to test:
 - **Information Gain** - ID3 Algorithm (Quilan, 1987)
 - **Information Gain Ratio** - C4.5 Algorithm (Quilan, 1988)
 - **Gini Impurity** - CART Algorithm (Breiman, 1984)

Information Gain

- This is the criterion discussed earlier → results in a method known as **ID3**
- Intuitively, it **selects the attribute A that maximizes the difference between:**
 - The **entropy of the original dataset D** (before splitting it based on A)
 - The **average entropy of the resulting partitions** if we split dataset D based on A

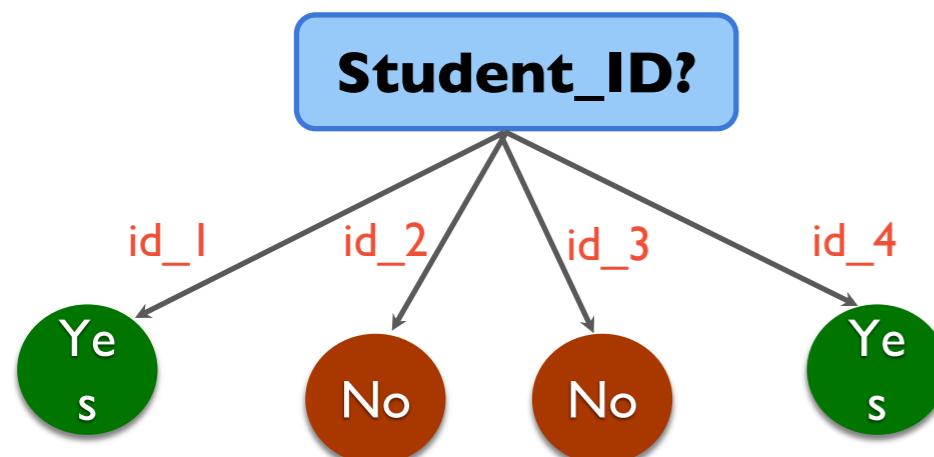
Formally:

- Let p_i be the probability that the label i occurs in instances in a dataset D
- Let $I(D) = -\sum_{i=1}^m p_i \log_2(p_i)$ be the **entropy of an arbitrary dataset D** , where m is the number of classes/labels
- Assume that the attribute A can take up v values
(that is, if we split D based on attribute A , we will end up with v partitions)
- Let $\text{Info}_A(D) = \sum_{j=1}^v \frac{|D_j|}{|D|} I(D_j)$ be the **average entropy of the partitions** resulting from splitting D based on A
- Let $\text{Gain}_A(D) = I(D) - \text{Info}_A(D)$ be the **Information Gain** resulting from splitting based on attribute A
- At each step, the algorithm splits the instances based on the attribute A with **highest Information Gain**

Information Gain

- This is the criterion discussed earlier → results in a method known as **ID3**
- Intuitively, it selects the attribute A that maximizes the difference between:
 - The entropy of the original dataset D (before splitting it based on A)
 - The average entropy of the resulting partitions if we split dataset D based on A
- Often results in a decision tree that is not necessarily the “simplest” one
- Intuitively, it often chooses attributes with many possible values (like **Student_ID**, **Name**, etc)

Student_ID	Student	Age	Credit_Score	Will_Buy_Computer
id_1	Yes	Young	Regular	Yes
id_2	Yes	Middle Age	Excellent	No
id_3	No	Young	Excellent	No
id_4	No	Older Adult	Regular	Yes



- Perfect split!
- With just one test, can “predict” the class perfectly
- But it is clearly overfitting (“memorizing” the dataset)

Information Gain

- This is the criterion discussed earlier → results in a method known as **ID3**
- Intuitively, it selects the attribute A that maximizes the difference between:
 - The entropy of the original dataset D (before splitting it based on A)
 - The average entropy of the resulting partitions if we split dataset D based on A
- Often results in a decision tree that is not necessarily the “simplest” one
- Intuitively, it often chooses attributes with many possible values (like **Student_ID**, **Name**, etc)

Student_ID	Student	Age	Credit_Score	Will_Buy_Computer
id_1	Yes	Young	Regular	Yes
id_2	Yes	Middle Age	Excellent	No
id_3	No	Young	Excellent	No
id_4	No	Older Adult	Regular	Yes

Student_ID?

Perfect split!

The **Information Gain Ratio** criterion, implemented by the **C4.5** algorithm, tries to mitigate this issue

Criteria for Selecting an Attribute to Test

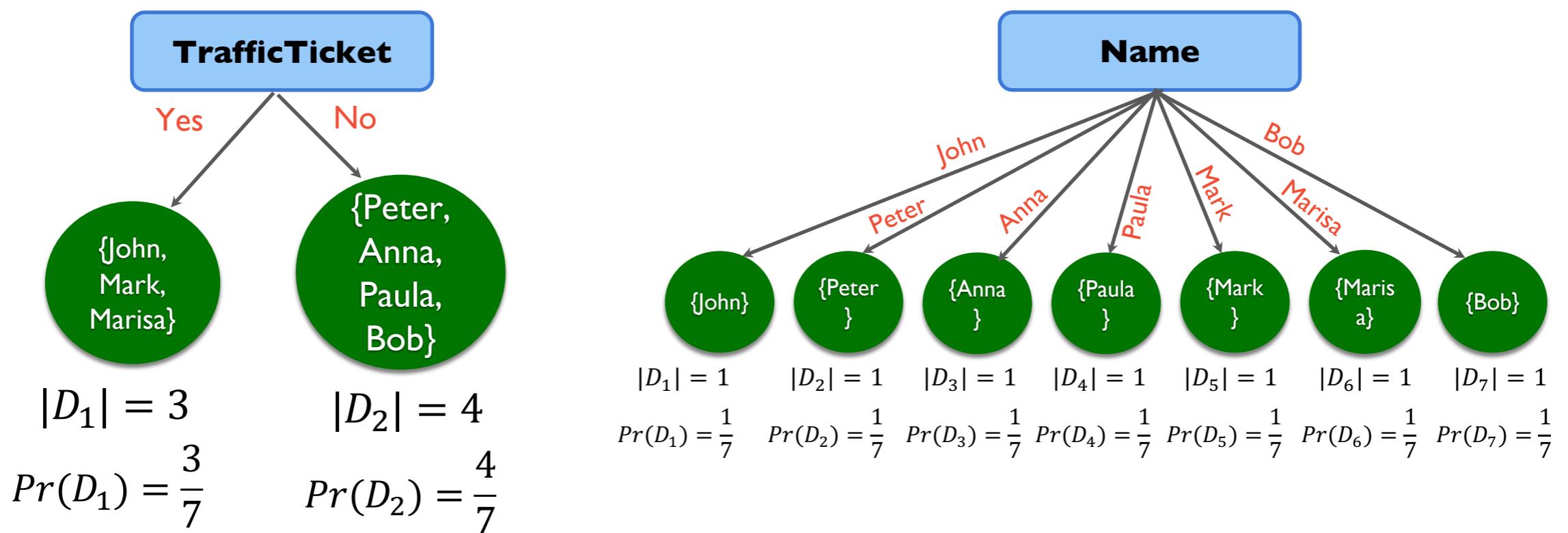
- We have discussed one possible criterion for selecting which attribute to test
 - **Information Gain**
- Many other criteria have been proposed — each with different properties
- Intuitively:
 - A split that keeps the **same proportion of classes** in each partition is **useless**
 - A split where the **instances in each partition have the same class** is **useful!**

- Main criteria for selecting which attribute to test:
 - **Information Gain** - ID3 Algorithm (Quilan, 1987)
 - **Information Gain Ratio** - C4.5 Algorithm (Quilan, 1988)
 - **Gini Impurity** - CART Algorithm (Breiman, 1984)

Information Gain Ratio

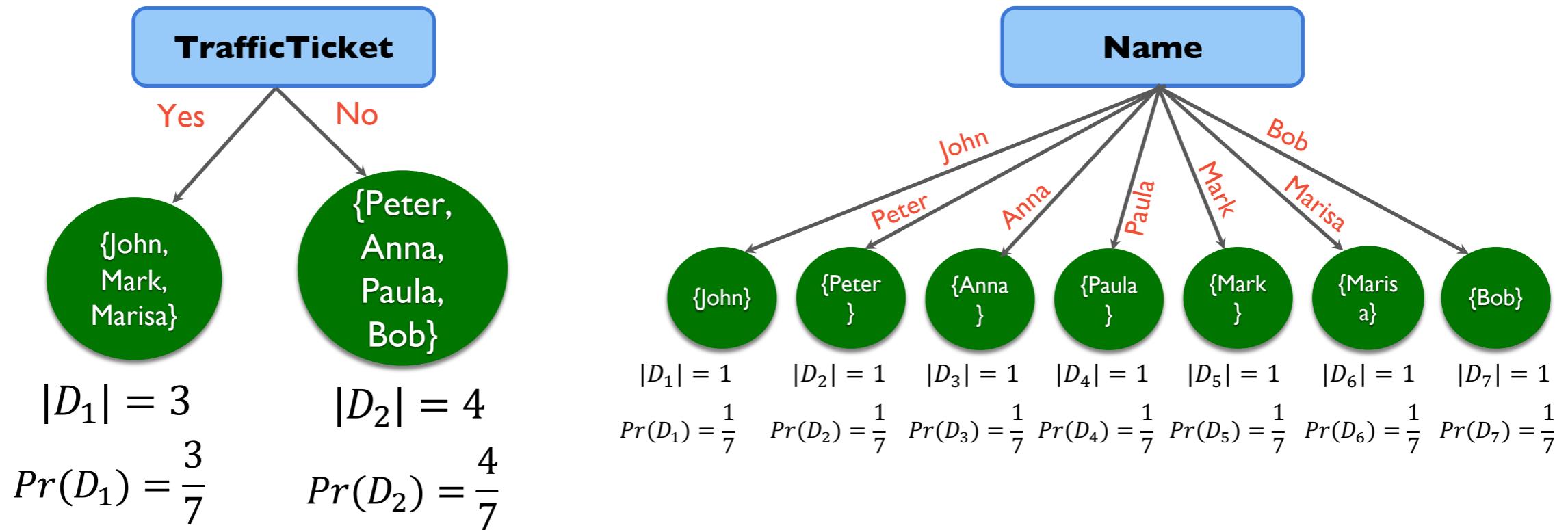
Name	Age	Gender	TrafficTicket	Class: High-Risk Driver
John	43	M	Yes	High Risk
Peter	18	M	No	Low Risk
Anna	35	F	No	Low Risk
Paula	19	F	No	Low Risk
Mark	90	M	Yes	High Risk
Marisa	19	F	Yes	Low Risk
Bob	30	M	No	Low Risk

- “Adjusts” Information Gain criterion to lessen the bias towards attributes that create many branches
- Intuition:



Information Gain Ratio

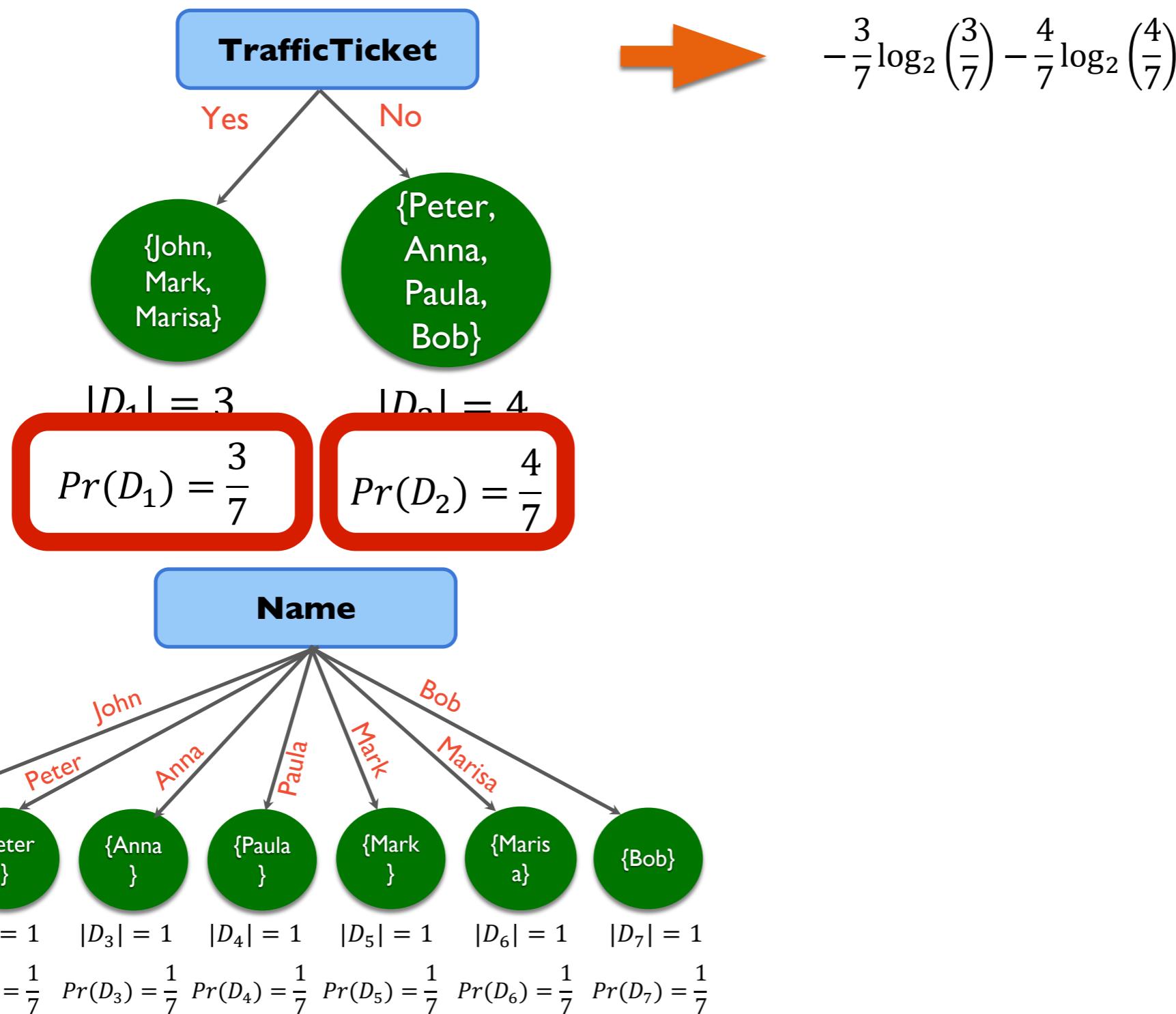
- “Adjusts” Information Gain criterion to lessen the bias towards attributes that create many branches
- Intuition:



- If there are lots of branches (e.g., if we split by Name, there are as many branches as attribute values!)
 - Then these probabilities will be very similar/homogenous
- How to quantify how “homogeneous” these quantities are?
 - We’ve seen something like this before... Entropy!

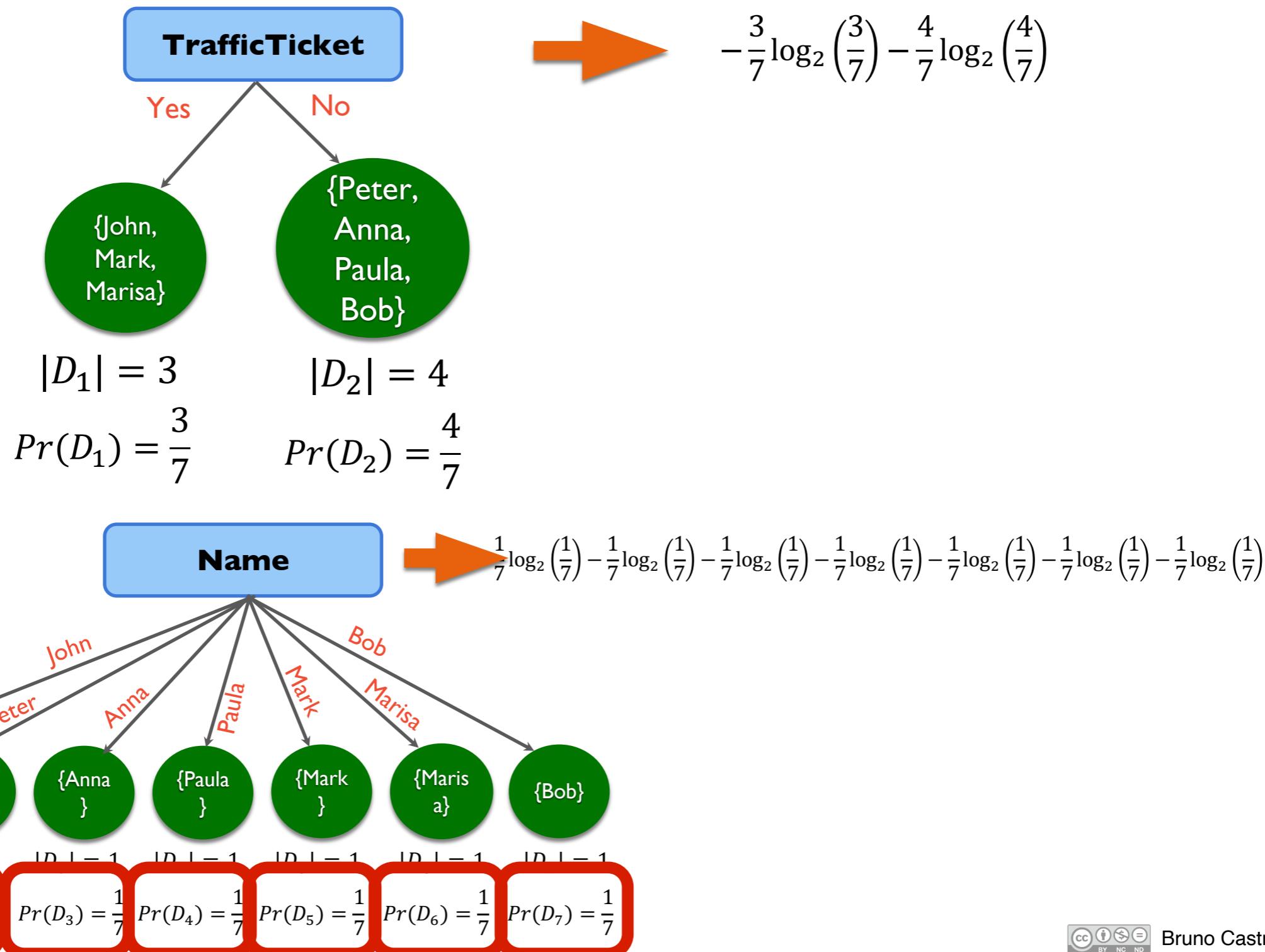
Information Gain Ratio

- How to quantify how “homogeneous” these quantities are?
 - We’ve seen something like this before... Entropy!



Information Gain Ratio

- How to quantify how “homogeneous” these quantities are?
 - We’ve seen something like this before... Entropy!

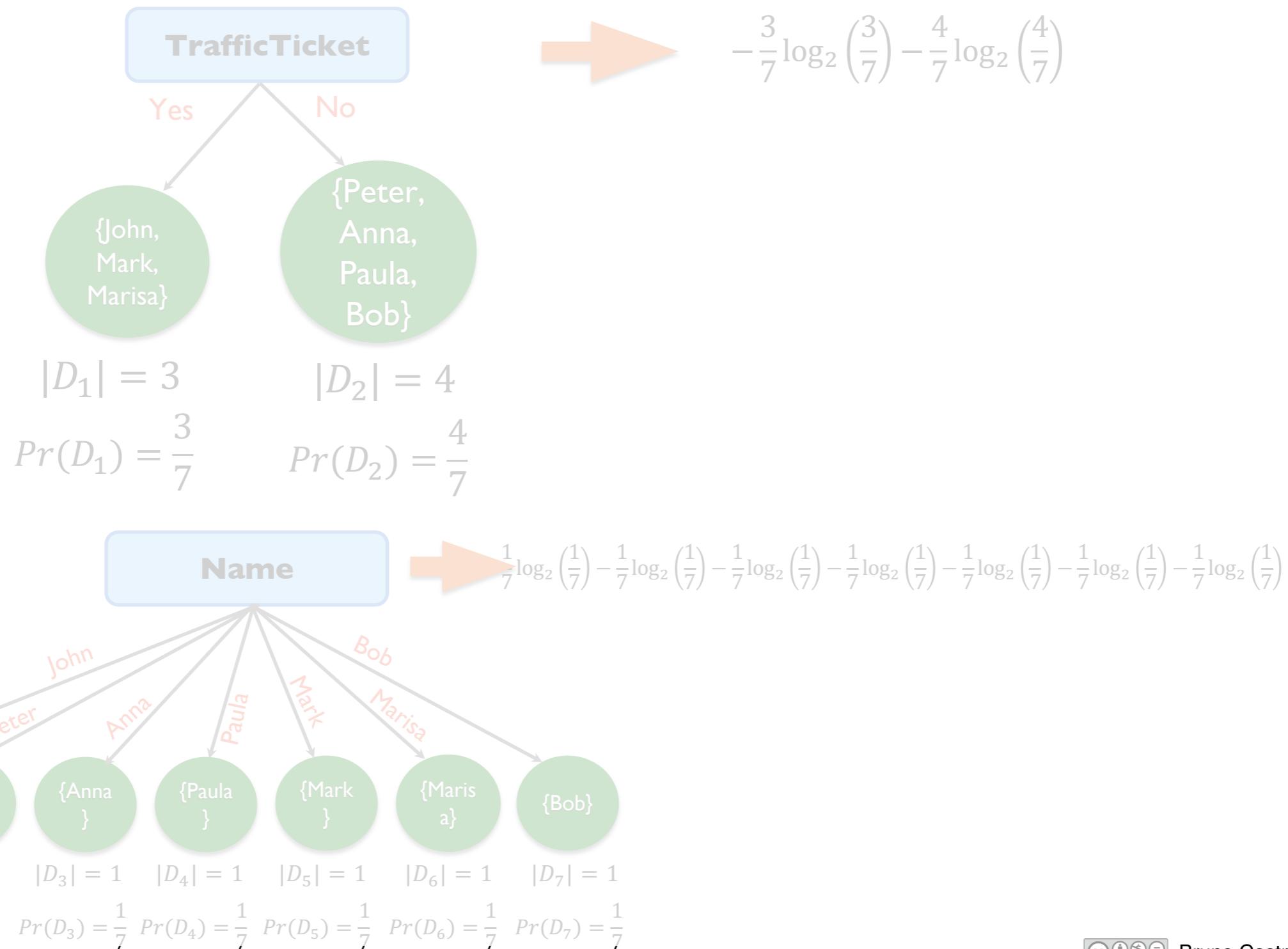


Information Gain Ratio

- How to quantify how “homogeneous” these quantities are?

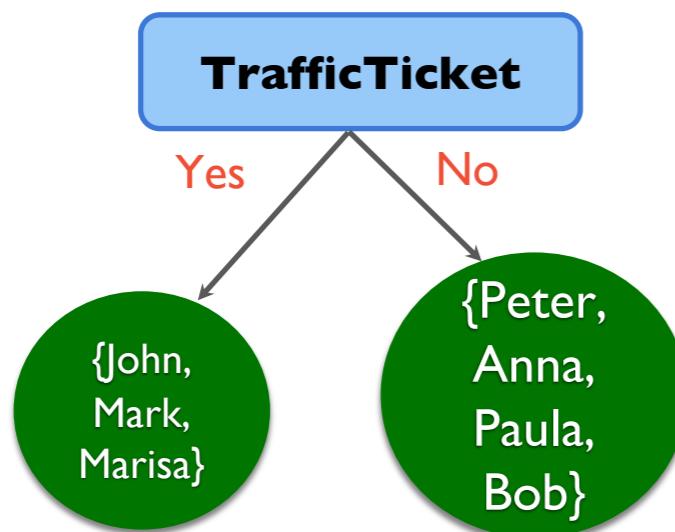
- We’ve seen something like this before... Entropy!

→ which is called, in this context, **Split_Info**

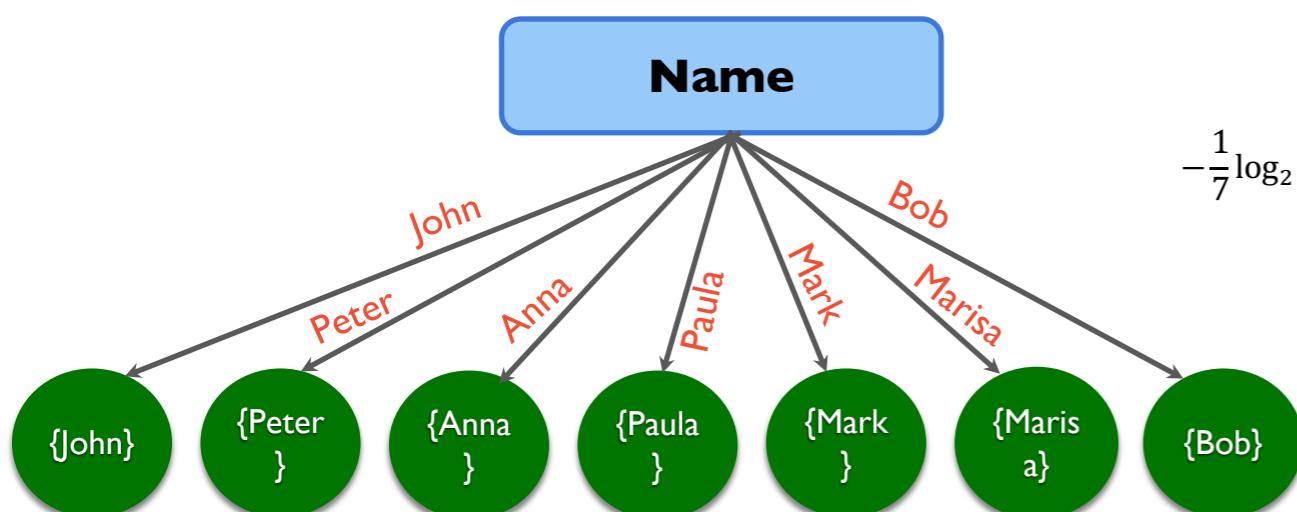


Information Gain Ratio

- How to quantify how “homogeneous” these quantities are?
 - We’ve seen something like this before... Entropy! → which is called, in this context, **Split_Info**



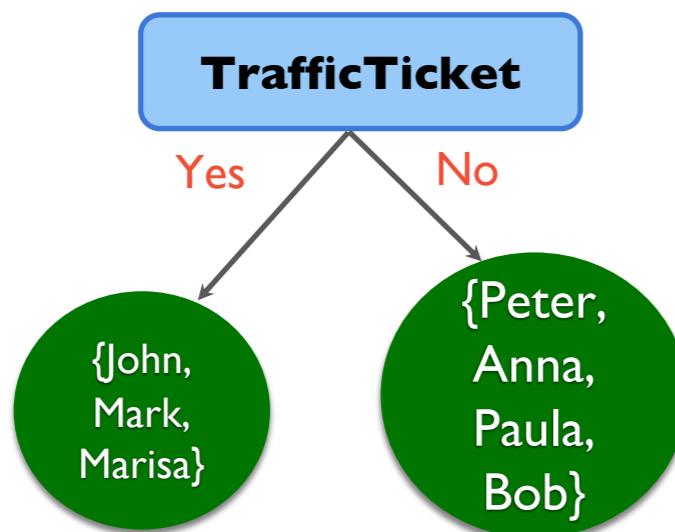
$$-\frac{3}{7} \log_2 \left(\frac{3}{7} \right) - \frac{4}{7} \log_2 \left(\frac{4}{7} \right)$$



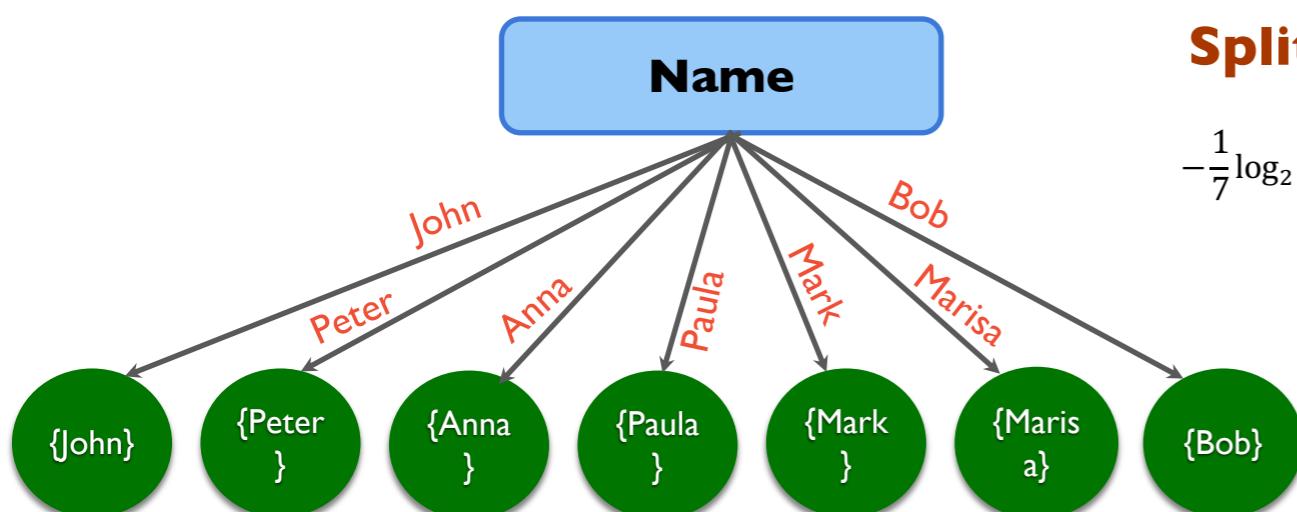
$$-\frac{1}{7} \log_2 \left(\frac{1}{7} \right) - \frac{1}{7} \log_2 \left(\frac{1}{7} \right)$$

Information Gain Ratio

- How to quantify how “homogeneous” these quantities are?
 - We’ve seen something like this before... Entropy! → which is called, in this context, **Split_Info**



$$\begin{aligned}\text{Split_Info}(\text{TrafficTicket}) &= -\frac{3}{7} \log_2 \left(\frac{3}{7}\right) - \frac{4}{7} \log_2 \left(\frac{4}{7}\right) \\ &= 0.98\end{aligned}$$



$$\begin{aligned}\text{Split_Info}(\text{Name}) &= \\ &-\frac{1}{7} \log_2 \left(\frac{1}{7}\right) - \frac{1}{7} \log_2 \left(\frac{1}{7}\right) \\ &= 2.8\end{aligned}$$

Information Gain Ratio

- How to quantify how “homogeneous” these quantities are?
 - We’ve seen something like this before... Entropy! → which is called, in this context, **Split_Info**

Name	Age	Gender	TrafficTicket	Class: High-Risk Driver
John	43	M	Yes	High Risk
Peter	18	M	No	Low Risk
Anna	35	F	No	Low Risk
Paula	19	F	No	Low Risk
Mark	90	M	Yes	High Risk
Marisa	19	F	Yes	Low Risk
Bob	30	M	No	Low Risk

$$\text{Split_Info(TrafficTicket)} = -\frac{3}{7} \log_2 \left(\frac{3}{7} \right) - \frac{4}{7} \log_2 \left(\frac{4}{7} \right) = 0.98$$

$$\text{Split_Info(Name)} = -\frac{1}{7} \log_2 \left(\frac{1}{7} \right) - \frac{1}{7} \log_2 \left(\frac{1}{7} \right) = 2.8$$

The larger value of Split_Info for Name suggests that this is a worse split than TrafficTicket

Information Gain Ratio

- The **Information Gain Ratio** combines two “measures” of how good a split (based on attribute A) is
 - Its **Information Gain**, as previously defined $\rightarrow \text{Gain}_A(D)$ \rightarrow higher is better
 - Its **Split_Info** $\rightarrow \text{Split_Info}(A)$ \rightarrow higher is worse

$$\text{Gain_Ratio}(A, D) = \frac{\text{Gain}_A(D)}{\text{Split_Info}(A)}$$

Name	Age	Gender	TrafficTicket	Class: High-Risk Driver
John	43	M	Yes	High Risk
Peter	18	M	No	Low Risk
Anna	35	F	No	Low Risk
Paula	19	F	No	Low Risk
Mark	90	M	Yes	High Risk
Marisa	19	F	Yes	Low Risk
Bob	30	M	No	Low Risk

$$\text{Split_Info(TrafficTicket)} = -\frac{3}{7} \log_2 \left(\frac{3}{7} \right) - \frac{4}{7} \log_2 \left(\frac{4}{7} \right) = 0.98$$

$$\text{Split_Info(Name)} = -\frac{1}{7} \log_2 \left(\frac{1}{7} \right) - \frac{1}{7} \log_2 \left(\frac{1}{7} \right) = 2.8$$

The larger value of Split_Info for Name suggests that this is a worse split than TrafficTicket

Information Gain Ratio

- The **Information Gain Ratio** combines two “measures” of how good a split (based on attribute A) is
 - Its **Information Gain**, as previously defined $\rightarrow \text{Gain}_A(D)$ \rightarrow higher is better
 - Its **Split_Info** $\rightarrow \text{Split_Info}(A)$ \rightarrow higher is worse

$$\text{Gain_Ratio}(A, D) = \frac{\text{Gain}_A(D)}{\text{Split_Info}(A)}$$

Name	Age	Gender	TrafficTicket	Class: High-Risk Driver
John	43	M	Yes	High Risk
Peter	18	M	No	Low Risk
Anna	35	F	No	Low Risk
Paula	19	F	No	Low Risk
Mark	90	M	Yes	High Risk
Marisa	19	F	Yes	Low Risk
Bob	30	M	No	Low Risk

$$\text{Gain}_{\text{TrafficTicket}}(D) = 0.466$$

$$\text{Split_Info}(\text{TrafficTicket}) = 0.98$$

$$\text{Gain}_{\text{Name}}(D) = 0.86$$

$$\text{Split_Info}(\text{Name}) = 2.8$$

Information Gain Ratio

- The **Information Gain Ratio** combines two “measures” of how good a split (based on attribute A) is
 - Its **Information Gain**, as previously defined $\rightarrow \text{Gain}_A(D)$ \rightarrow higher is better
 - Its **Split_Info** $\rightarrow \text{Split_Info}(A)$ \rightarrow higher is worse

$$\text{Gain_Ratio}(A, D) = \frac{\text{Gain}_A(D)}{\text{Split_Info}(A)}$$

Name	Age	Gender	TrafficTicket	Class: High-Risk Driver
John	43	M	Yes	High Risk
Peter	18	M	No	Low Risk
Anna	35	F	No	Low Risk
Paula	19	F	No	Low Risk
Mark	90	M	Yes	High Risk
Marisa	19	F	Yes	Low Risk
Bob	30	M	No	Low Risk

$$\text{Gain}_{\text{TrafficTicket}}(D) = 0.466$$

$$\text{Split_Info}(\text{TrafficTicket}) = 0.98$$

$$\text{Gain}_{\text{Name}}(D) = 0.86$$

$$\text{Split_Info}(\text{Name}) = 2.8$$

In terms of **Information Gain** only, **Name** looks like **a good split**

However, its **Split_Info** suggests that **Name** it's **a bad split**

Let's combine these into a single score that takes both into account

Gain_Ratio!

Information Gain Ratio

- The **Information Gain Ratio** combines two “measures” of how good a split (based on attribute A) is
 - Its **Information Gain**, as previously defined $\rightarrow \text{Gain}_A(D)$ \rightarrow higher is better
 - Its **Split_Info** $\rightarrow \text{Split_Info}(A)$ \rightarrow higher is worse

$$\text{Gain_Ratio}(A, D) = \frac{\text{Gain}_A(D)}{\text{Split_Info}(A)}$$

In terms of **Information Gain** only, Name looks like **a good split**
However, its **Split_Info** suggests that Name it's **a bad split**

Let's combine these into a single score that takes both into account

Gain_Ratio!

$$\text{Gain}_{\text{TrafficTicket}}(D) = 0.466$$

$$\text{Split_Info}(\text{TrafficTicket}) = 0.98$$

$$\text{Gain_Ratio}(\text{TrafficTicket}, D) = \frac{0.466}{0.98} = 0.475$$

$$\text{Gain}_{\text{Name}}(D) = 0.86$$

$$\text{Split_Info}(\text{Name}) = 2.8$$

$$\text{Gain_Ratio}(\text{Name}, D) = \frac{0.86}{2.8} = 0.307$$

Information Gain Ratio

- The **Information Gain Ratio** combines two “measures” of how good a split (based on attribute A) is
 - Its **Information Gain**, as previously defined $\rightarrow \text{Gain}_A(D)$ \rightarrow higher is better
 - Its **Split_Info** $\rightarrow \text{Split_Info}(A)$ \rightarrow higher is worse

$$\text{Gain_Ratio}(A, D) = \frac{\text{Gain}_A(D)}{\text{Split_Info}(A)}$$

In terms of **Information Gain** only, **Name** looks like **a good split**

However, its **Split_Info** suggests that **Name** it's **a bad split**

Let's combine these into a single score that takes both into account

Gain_Ratio!

$$\text{Gain_Ratio}(\text{TrafficTicket}, D) = \frac{0.466}{0.98} = 0.475$$

This criterion “understands” that splitting based on **TrafficTicket** is better than splitting based on **Name**

$$\text{Gain_Ratio}(\text{Name}, D) = \frac{0.86}{2.8} = 0.307$$

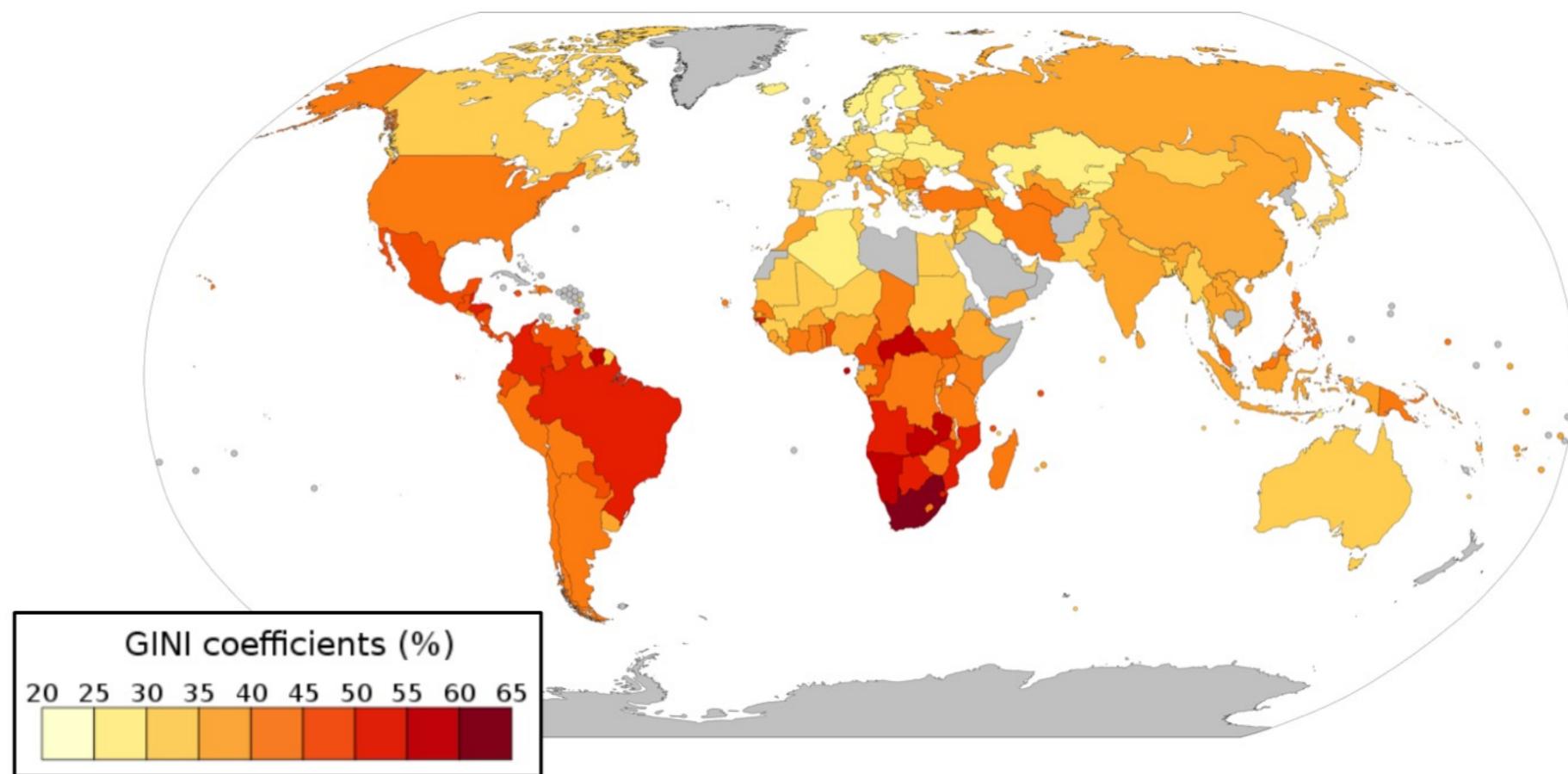
Criteria for Selecting an Attribute to Test

- We have discussed one possible criterion for selecting which attribute to test
 - **Information Gain**
- Many other criteria have been proposed — each with different properties
- Intuitively:
 - A split that keeps the **same proportion of classes** in each partition is **useless**
 - A split where the **instances in each partition have the same class** is **useful!**

- Main criteria for selecting which attribute to test:
 - **Information Gain** - ID3 Algorithm (Quilan, 1987)
 - **Information Gain Ratio** - C4.5 Algorithm (Quilan, 1988)
 - **Gini Impurity** - CART Algorithm (Breiman, 1984)

Gini Criterion

- Originally proposed to quantify how uneven income is across a population



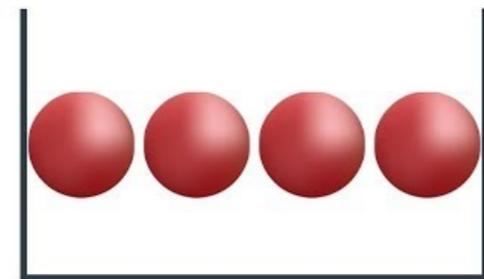
- Gini coefficient → how uneven income/wealth distribution across a population is
 - $\text{Gini} = 1$ → very uneven income/wealth distribution across a population
 - $\text{Gini} = 0$ → very even income/wealth distribution across a population

Gini Criterion

- Gini coefficient → how uneven income/wealth distribution across a population is
- In the context of decision trees
 - how uneven (or non-homogeneous) are the classes after a split

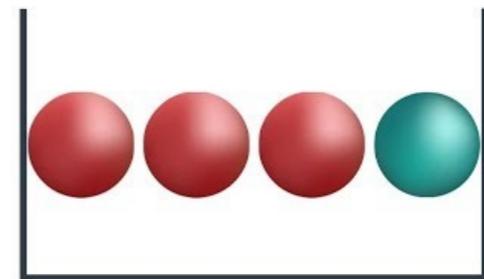
Let's suppose we test Age, and the instances associated with Age=Young look like this

Will repay loan
Will not repay loan



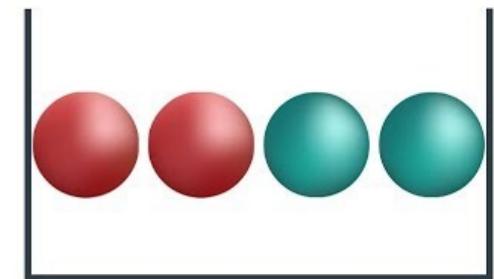
Even

$$\begin{aligned}\Pr(\text{Red}) &= 1 \\ \Pr(\text{Green}) &= 0\end{aligned}$$



“Medium”

$$\begin{aligned}\Pr(\text{Red}) &= 3/4 \\ \Pr(\text{Green}) &= 1/4\end{aligned}$$



Uneven

$$\begin{aligned}\Pr(\text{Red}) &= 2/4 \\ \Pr(\text{Green}) &= 2/4\end{aligned}$$

Gini Criterion

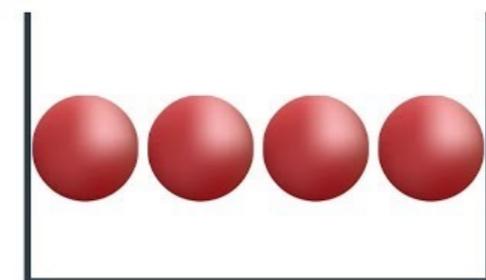
- Gini coefficient → how uneven income/wealth distribution across a population is
- In the context of decision trees
 - how uneven (or non-homogeneous) are the classes after a split

$$\text{Gini}(D) = 1 - (\Pr(\text{Red})^2 + \Pr(\text{Green})^2)$$

Let's suppose we test Age, and the instances associated with Age=Young look like this

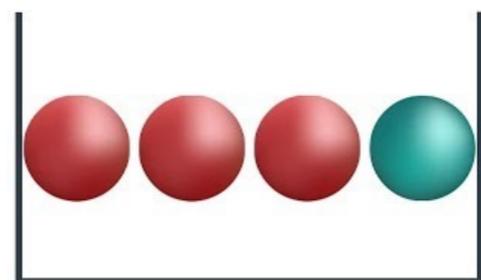
Will repay loan

Will not repay loan



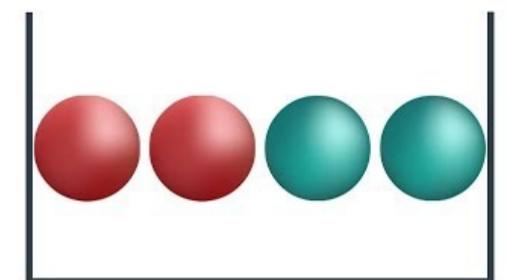
Even

$$\begin{aligned}\Pr(\text{Red}) &= 1 \\ \Pr(\text{Green}) &= 0\end{aligned}$$



“Medium”

$$\begin{aligned}\Pr(\text{Red}) &= 3/4 \\ \Pr(\text{Green}) &= 1/4\end{aligned}$$



Uneven

$$\begin{aligned}\Pr(\text{Red}) &= 2/4 \\ \Pr(\text{Green}) &= 2/4\end{aligned}$$

Gini \Rightarrow

$$\begin{aligned}1 - (1^2 + 0^2) \\ = 0\end{aligned}$$

$$\begin{aligned}1 - ((3/4)^2 + (1/4)^2) \\ = 0.375\end{aligned}$$

$$\begin{aligned}1 - ((2/4)^2 + (2/4)^2) \\ = 0.5\end{aligned}$$

Gini Criterion

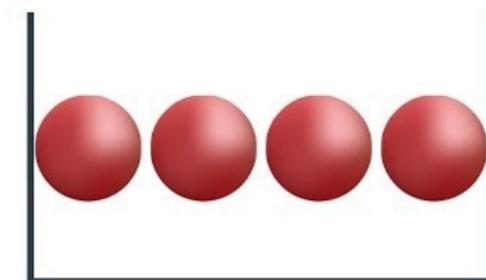
- Gini coefficient → how uneven income/wealth distribution across a population is
- In the context of decision trees
 - how uneven (or non-homogeneous) are the classes after a split

$$\text{Gini}(D) = 1 - (\Pr(\text{Red})^2 + \Pr(\text{Green})^2)$$

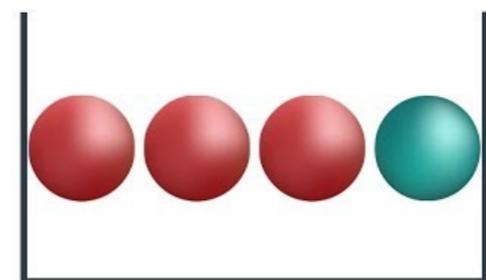
Let's suppose we test Age, and the instances associated with Age=Young look like this

Will repay loan

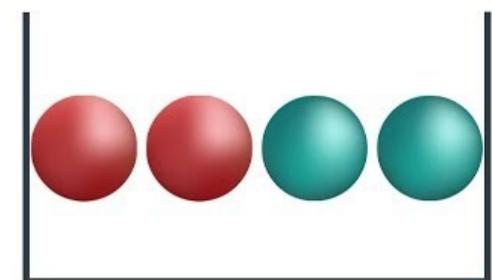
Will not repay loan



Even



“Medium”



Uneven

Gini \Rightarrow

$$\begin{aligned} 1 - (1^2 + 0^2) \\ = 0 \end{aligned}$$

$$\begin{aligned} 1 - ((3/4)^2 + (1/4)^2) \\ = 0.375 \end{aligned}$$

$$\begin{aligned} 1 - ((2/4)^2 + (2/4)^2) \\ = 0.5 \end{aligned}$$

more homogenous partition → ideal result of a split
(smaller value of the Gini coefficient)

Gini Criterion

- In the context of decision trees
 - how uneven (or non-homogeneous) are the classes after a split

$$\text{Gini}(D) = 1 - (\Pr(\text{Red})^2 + \Pr(\text{Green})^2)$$

- More generally, if there are m classes in a dataset D

$$\text{Gini}(D) = 1 - \left(\sum_{i=1}^m (p_i)^2 \right)$$

where p_i be the probability that the label/class i occurs in instances in a dataset D

Gini Criterion

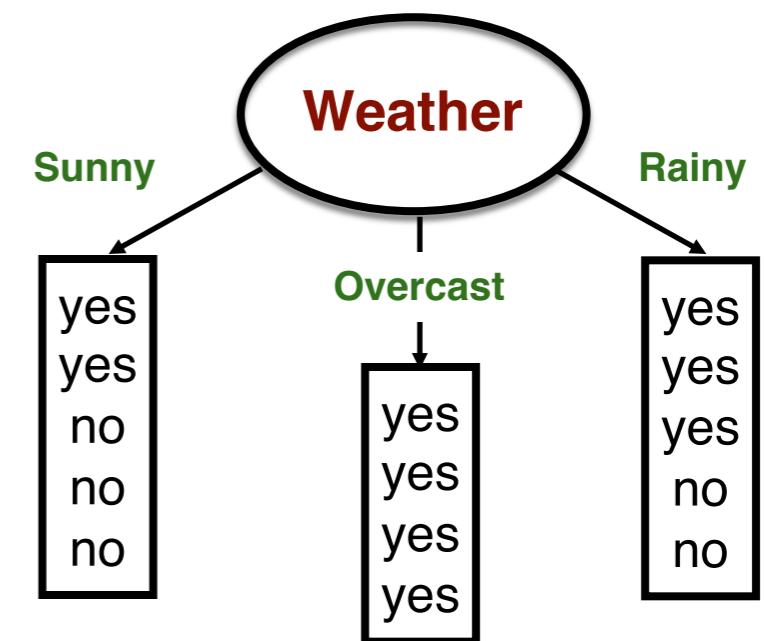
- Decision tree to predict whether a person will play tennis

Weather	Temperature	Humidity	Windy	PlayTennis
Sunny	Hot	High	False	No
Sunny	Hot	High	True	No
Overcast	Hot	High	False	Yes
Rainy	Mild	High	False	Yes
Rainy	Cool	Normal	False	Yes
Rainy	Cool	Normal	True	No
Overcast	Cool	Normal	True	Yes
Sunny	Mild	High	False	No
Sunny	Cool	Normal	False	Yes
Rainy	Mild	Normal	False	Yes
Sunny	Mild	Normal	True	Yes
Overcast	Mild	High	True	Yes
Overcast	Hot	Normal	False	Yes
Rainy	Mild	High	True	No

- Let's consider testing Weather

Original dataset: 9 instances "Yes"
5 instances "No"

yes yes yes yes yes yes yes yes
no no no no no



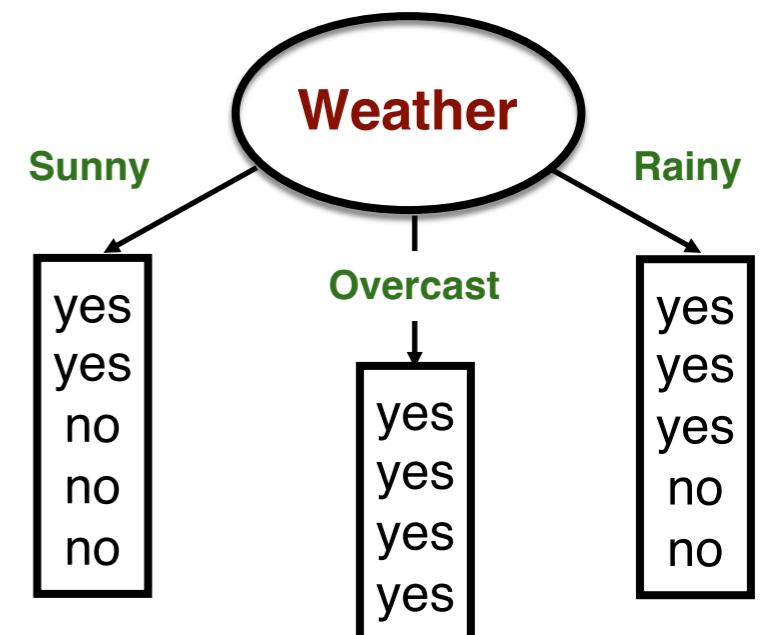
Gini Criterion

- Decision tree to predict whether a person will play tennis
- Gini coefficient of the original dataset:
 - $\text{Gini}(9/14, 5/14) = 1 - ((9/14)^2 + (5/14)^2)$
= **0.459**
- Gini coeff. of partitions resulting from testing Weather:
 - Weather=Sunny
 - $\text{Gini}_{\text{Sunny}}(2/5, 3/5) = 1 - ((2/5)^2 + (3/5)^2)$
= 0.48
 - Weather=Overcast
 - $\text{Gini}_{\text{Overcast}}(4/4, 0/4) = 1 - ((4/4)^2 + (0/4)^2)$
= 0
 - Weather=Rainy
 - $\text{Gini}_{\text{Rainy}}(3/5, 2/5) = 1 - ((3/5)^2 + (2/5)^2)$
= 0.48
- Average Gini coefficient of the resulting partitions
 - $(5/14) \times 0.48 + (4/14) \times 0 + (5/14) \times 0.48 = \mathbf{0.3428}$

- Let's consider testing Weather

Original dataset: 9 instances "Yes"
5 instances "No"

yes yes yes yes yes yes yes yes
no no no no no



Gini Criterion

- Decision tree to predict whether a person will play tennis

- Gini coefficient of the original dataset:**

- $$\begin{aligned} \text{Gini}(9/14, 5/14) &= 1 - \left((9/14)^2 + (5/14)^2 \right) \\ &= 0.459 \end{aligned}$$

- Gini coeff. of partitions resulting from testing Weather:**

- Weather=Sunny**

- $$\begin{aligned} \text{Gini}_{\text{Sunny}}(2/5, 3/5) &= 1 - \left((2/5)^2 + (3/5)^2 \right) \\ &= 0.48 \end{aligned}$$

- Weather=Overcast**

- $$\begin{aligned} \text{Gini}_{\text{Overcast}}(4/4, 0/4) &= 1 - \left((4/4)^2 + (0/4)^2 \right) \\ &= 0 \end{aligned}$$

- Weather=Rainy**

- $$\begin{aligned} \text{Gini}_{\text{Rainy}}(3/5, 2/5) &= 1 - \left((3/5)^2 + (2/5)^2 \right) \\ &= 0.48 \end{aligned}$$

- Average Gini coefficient of the resulting partitions**

- $$(5/14) \times 0.48 + (4/14) \times 0 + (5/14) \times 0.48 = 0.3428$$

Testing the attribute **Weather**:

Gini(Weather) = 0.3428

- Now proceed similarly as when selecting attributes via Information Gain...
- Compute Gini coefficient of each candidate attribute
- Split dataset using the attribute with the **lowest Gini coefficient**

Gini Criterion

Formally:

- Let p_i be the probability that the label i occurs in instances in a dataset D
- $\text{Gini}(D) = 1 - \left(\sum_{i=1}^m (p_i)^2 \right)$ is the **Gini coefficient** of an arbitrary dataset D (m is the number of classes/labels)
- Assume that the attribute A can take up v values
(that is, if we split D based on attribute A , we will end up with v partitions)
- Let $\text{Gini}_A(D) = \sum_{j=1}^v \frac{|D_j|}{|D|} \text{Gini}(D_j)$ be the **Gini coefficient** associated with splitting D based on A
- At each step, the algorithm splits the instances based on the attribute A with **lowest Gini coefficient**

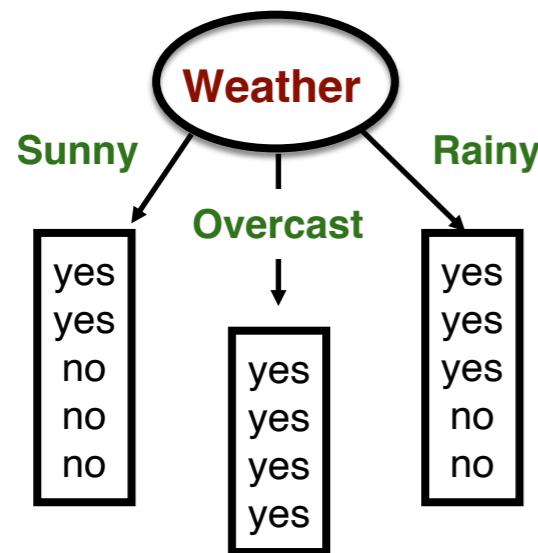
Criteria for Selecting an Attribute to Test

- Main criteria for selecting which attribute to test:
 - **Information Gain** - ID3 Algorithm (Quilan, 1987)
 - **Information Gain Ratio** - C4.5 Algorithm (Quilan, 1988)
 - **Gini Impurity** - CART Algorithm (Breiman, 1984)

- **Empirically:**
 - **Information Gain Ratio** is almost always better than **Information Gain**
 - in terms of **predictive power** and **complexity of the resulting decision trees**
 - However, in practice
 - which criterion will work best depends heavily on the application
 - should test them all and compare the resulting performances

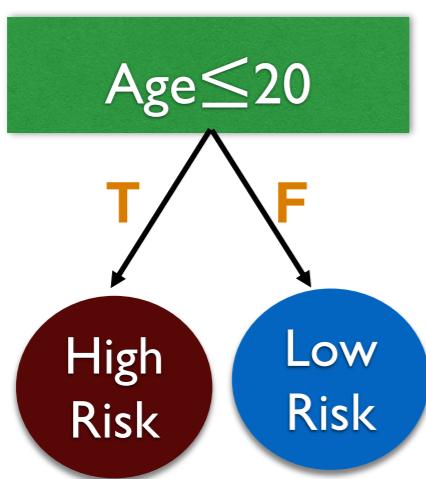
Dealing with Numerical Attributes

- So far we have studied how to select which **categorical attribute** to split



→ One branch per possible value of the attribute

- How do we decide a splitting point/value in case of **numerical attributes**?



→ Consider deciding how to split the attribute **Age**

Pick a threshold value, V
Generate two branches/disjoint partitions:

- one partition with instances s.t. $\text{Age} \leq V$
- one partition with instances s.t. $\text{Age} > V$

Dealing with Numerical Attributes

- How do we decide a splitting point/value in case of **numerical attributes**?
 - one partition with instances s.t. $\text{Age} \leq V$
 - one partition with instances s.t. $\text{Age} > V$

1) Sort the instances according to the value of the attribute

Name	Age	Gender	TrafficTicket	Class: High-Risk Driver
John	43	M	Yes	High Risk
Peter	18	M	No	High Risk
Anna	35	F	No	Low Risk
Paula	19	F	No	High Risk
Mark	90	M	Yes	High Risk
Marisa	21	F	Yes	High Risk
Bob	30	M	No	Low Risk

Dealing with Numerical Attributes

- How do we decide a splitting point/value in case of **numerical attributes**?
 - one partition with instances s.t. $\text{Age} \leq V$
 - one partition with instances s.t. $\text{Age} > V$

1) Sort the instances according to the value of the attribute

Name	Age	Gender	TrafficTicket	Class: High-Risk Driver
Peter	18	M	No	High Risk
Paula	19	F	No	High Risk
Marisa	21	F	Yes	High Risk
Bob	30	M	No	Low Risk
Anna	35	F	No	Low Risk
John	43	M	Yes	High Risk
Mark	90	M	Yes	High Risk

Dealing with Numerical Attributes

- How do we decide a splitting point/value in case of **numerical attributes**?
 - one partition with instances s.t. $\text{Age} \leq V$
 - one partition with instances s.t. $\text{Age} > V$

1) Sort the instances according to the value of the attribute

2) Evaluate splits done using as threshold the mean values between consecutive Ages

Name	Age	Gender	TrafficTicket	Class: High-Risk Driver
Peter	18	M	No	High Risk
Paula	19	F	No	High Risk
Marisa	21	F	Yes	High Risk
Bob	30	M	No	Low Risk
Anna	35	F	No	Low Risk
John	43	M	Yes	High Risk
Mark	90	M	Yes	High Risk

Dealing with Numerical Attributes

- How do we decide a splitting point/value in case of **numerical attributes**?
 - one partition with instances s.t. $\text{Age} \leq V$
 - one partition with instances s.t. $\text{Age} > V$

1) Sort the instances according to the value of the attribute

2) Evaluate splits done using as threshold the mean values between consecutive Ages

Name	Age	Gender	TrafficTicket	Class: High-Risk Driver
Peter	18	M	No	High Risk
Paula	19	F	No	High Risk
Marisa	21	F	Yes	High Risk
Bob	30	M	No	Low Risk
Anna	35	F	No	Low Risk
John	43	M	Yes	High Risk
Mark	90	M	Yes	High Risk

A red vertical arrow points downwards from the 'Age' column header towards the data rows. A green box on the right contains the text $\text{Age} \leq 18.5$.

Dealing with Numerical Attributes

- How do we decide a splitting point/value in case of **numerical attributes**?
 - one partition with instances s.t. $\text{Age} \leq V$
 - one partition with instances s.t. $\text{Age} > V$

1) Sort the instances according to the value of the attribute

2) Evaluate splits done using as threshold the mean values between consecutive Ages

Name	Age	Gender	TrafficTicket	Class: High-Risk Driver	
Peter	18	M	No	High Risk	$\text{Age} \leq 18.5$
Paula	19	F	No	High Risk	$\text{Age} \leq 20$
Marisa	21	F	Yes	High Risk	
Bob	30	M	No	Low Risk	
Anna	35	F	No	Low Risk	
John	43	M	Yes	High Risk	
Mark	90	M	Yes	High Risk	

A red vertical arrow points downwards from the 'Age' column header towards the data rows. A red double-headed arrow is positioned between the 19 and 21 age values, spanning the 'Gender' and 'TrafficTicket' columns. To the right of the table, two green boxes are shown: the top one contains the text $\text{Age} \leq 18.5$ and the bottom one contains $\text{Age} \leq 20$.

Dealing with Numerical Attributes

- How do we decide a splitting point/value in case of **numerical attributes**?
 - one partition with instances s.t. $\text{Age} \leq V$
 - one partition with instances s.t. $\text{Age} > V$

1) Sort the instances according to the value of the attribute

2) Evaluate splits done using as threshold the mean values between consecutive Ages

Name	Age	Gender	TrafficTicket	Class: High-Risk Driver	
Peter	18	M	No	High Risk	$\text{Age} \leq 18.5$
Paula	19	F	No	High Risk	$\text{Age} \leq 20$
Marisa	21	F	Yes	High Risk	$\text{Age} \leq 25.5$
Bob	30	M	No	Low Risk	
Anna	35	F	No	Low Risk	
John	43	M	Yes	High Risk	
Mark	90	M	Yes	High Risk	

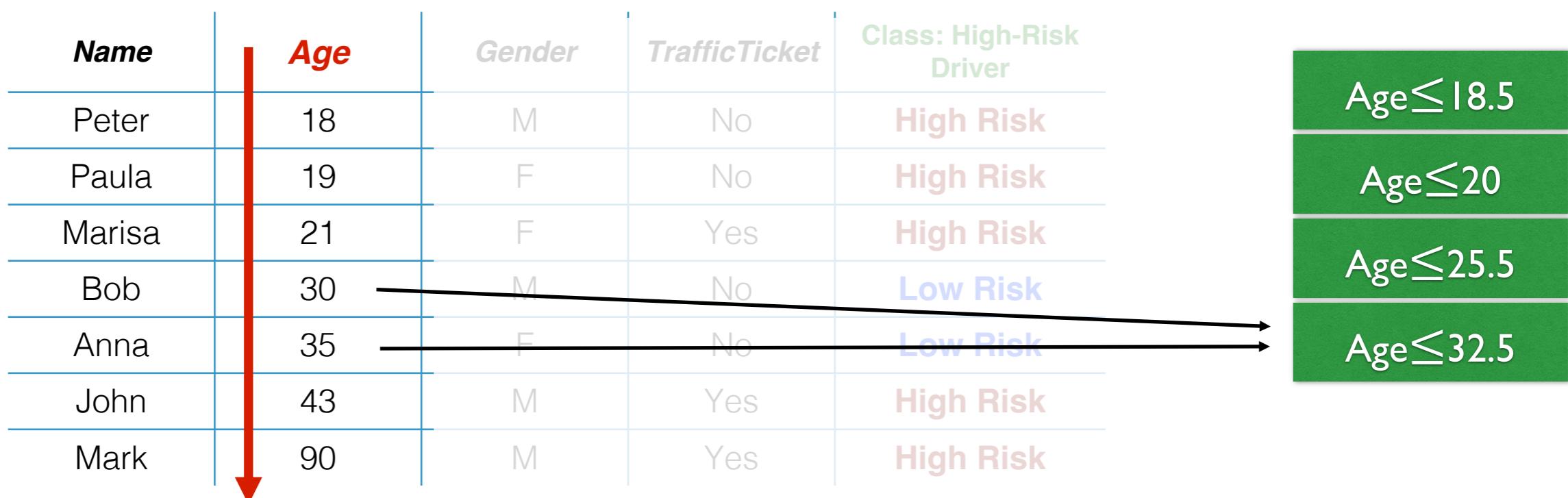
A red arrow points downwards from the 'Age' column header to the value '90' in the last row. A red vertical line is drawn through the 'Age' column, passing through the value '21' for Marisa. Three black horizontal lines are drawn through the 'Age' column, passing through the values '21', '30', and '43'. An arrow points from the '43' value to the right, pointing towards the three green boxes.

Dealing with Numerical Attributes

- How do we decide a splitting point/value in case of **numerical attributes**?
 - one partition with instances s.t. $\text{Age} \leq V$
 - one partition with instances s.t. $\text{Age} > V$

1) Sort the instances according to the value of the attribute

2) Evaluate splits done using as threshold the mean values between consecutive Ages

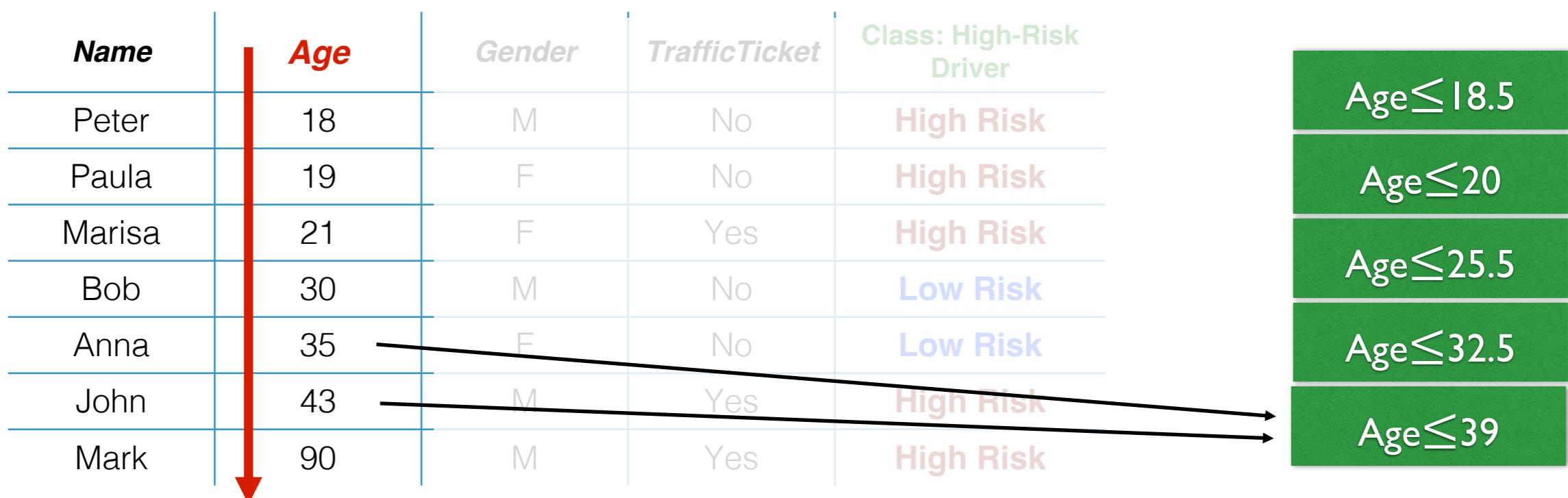


Dealing with Numerical Attributes

- How do we decide a splitting point/value in case of **numerical attributes**?
 - one partition with instances s.t. $\text{Age} \leq V$
 - one partition with instances s.t. $\text{Age} > V$

1) Sort the instances according to the value of the attribute

2) Evaluate splits done using as threshold the mean values between consecutive Ages



Dealing with Numerical Attributes

- How do we decide a splitting point/value in case of **numerical attributes**?
 - one partition with instances s.t. $\text{Age} \leq V$
 - one partition with instances s.t. $\text{Age} > V$

1) Sort the instances according to the value of the attribute

2) Evaluate splits done using as threshold the mean values between consecutive Ages

Dealing with Numerical Attributes

- How do we decide a splitting point/value in case of **numerical attributes**?
 - one partition with instances s.t. $\text{Age} \leq V$
 - one partition with instances s.t. $\text{Age} > V$

1) Sort the instances according to the value of the attribute

2) Evaluate splits done using as threshold the mean values between consecutive Ages

3) Pick the split threshold that maximizes the criterion of interest (Info. Gain, Gini, etc.)

- It has been shown that, for most commonly-used splitting criteria
 - testing only thresholds that correspond to such mean values is sufficient

Decision Trees: Pros and Cons

- **Pros:**

- Simple for humans to understand and interpret
- Handles both numerical and categorical attributes
- Requires little data preparation (e.g., *no need to normalize attributes*)
- Performs well with large datasets
- “Automatically” ignores irrelevant attributes not useful to predict the class/label

- **Cons:**

- Non-robust: small variations in the dataset can generate completely different trees
- Often generate overly-complicated trees that overfit to training data
 - i.e., that do not generalize well (make correct predictions) to new instances
- Although it is possible to deal with numerical attributes, it is time-consuming
 - estimates suggest that processing them takes ~70% of execution time (Catlett, 1991)