Lecture 5: Decision Trees



e Decision Trees

* extract a set of classification rules to classify a given instance
* like IF-ELSE statements, testing different attributes
* ML model that is highly interpretable by humans

()OS Bruno Castro da Silva



Decision Trees

#friends funnyscore Likes

-

if #friends >= 50
if funny_score > 3

Likes >= 30
else
- Likes <30
Decision Trees else
| if funny_score > 9
l * Likes >= 30
l else
e o Likes <30

()OS0 Bruno Castro da Silva



http://en.akinator.com/

Bruno Castro da Silva



e - -~ - -

Question N°1

Is your character a female?

Don't know

o
Probably

Bruno Castro da Silva



Question N°2

Is your character real?

Bruno Castro da Silva



- — - Sy —— T e R I Sy o T — - e e T e R R R SR e - -

‘ Correct ‘} Question N°3

Is your character a famous
youtuber?

Don't know

o
Probably

- ) L
Probably not
y .
' a8

9 ¥ 1 P ’ - ) |

) R .

| .

N B INY g -
y X > Y
el & iy
] SEAY (i
‘ ‘ -
-
d —
- < :
)
‘ <

Bruno Castro da Silva



{ Correct Question N°4

Is your character older than 35
years old?

Don't know

o
Probably

Probably not

Bruno Castro da Silva



Question N°5

Is your character American ?

Don't know
Probably

Probably not
y

Bruno Castro da Silva



* Correct Question N°6

Is your character an actor?

Don't know

o
Probably

Bruno Castro da Silva



Question N°7

|

Is your character the president
or was he?

Don't know
Probably

- ) L
Probably not

y .
(I

Bruno Castro da Silva



‘ Correct ‘} Question N°8

Is your character black?

Don't know

-
Probably

Bruno Castro da Silva



Bruno Castro da Silva

r

=3

/

8.
KX

I think of
Parack Obama

.

»

—

Former President of the United States

© Copyright / IP Policy




* Which attributes of a person to test first, to guess as fast as possible?

* |s the person a man or a woman?

* Is the person older than 5 years old?

Information Gain

* G(“Gender") = 0.9
* G(“Lives_in_USA”) = 0.73 Entropy of a set (or dataset)

* G(“Is_Politician™) = 0.36

()OS Bruno Castro da Silva

|4



Loan Concession

Decision [rees

()OS0 Bruno Castro da Silva

Application
> 166.500
A
[Educaﬁon)
> 1.500 = 1.500
’
Yes .
Famil
—
> 2.5/< 2.500
N
Yes No
I | |

= 166.500

> 1.500

> 11€= 116.500

N

> 100.500

.

< 100.500

[Educaﬁon]

A
Yes No

= 1.500

\
\
\
\

>2.500 < 2.500

> 112< 113.500

4

A
Yes No

|5



Is it raining?

Decision Tree [Z X]

Is it windy? don't bring

anything
N

Simple ML model/algorithm
Widely used in practice

Easy to interpret

use an umbrella

wear a rain jacket

© Machine Leaming @ Berkeley

Performs a series of tests on attributes of an instance

eventually leading to decision/prediction about the class of that instance

(c)WSO) Bruno Castro da Silva



Decision [rees

A decision tree for

testing loan suitability

Root node

reomo o™

Yes

Decision node

. Criminal

. record?

Uses credit
card?

Yes

No

v 4 L 4 4
High risk Low risk Low risk High risk

Leaf/terminal node

"Real-World Functional Programming with Examples in F# and C#”. (Skeet and Petricek, 2010) |7

()OS0 Bruno Castro da Silva



Decision [rees

A decision tree for

testing loan suitability

Hierarchical model used to decide/predict

to which class a given instance belongs

()OS0 Bruno Castro da Silva 8



Decision [rees

How likely it is that a given client will buy a computer?

Each instance, X;, is described by the following attributes
x; = [Student, Age, Credit_Score], where y; € {Yes, No}

(c)OSC Bruno Castro da Sil

O O O O

<

a

[ Age? ]

Young Middle Age Older Adult

Y

{ Student!? ] Yes { Credit_Score? ]

No Yes Regular Excellent

Each non-leaf node tests the value of a given attribute

Each branch corresponds to one possible value of that attribute

Each leaf corresponds to predicting one particular class

The path from the root node to a leaf defines a classification rule

19



Decision [rees

How likely it is that a given client will buy a computer?

Instance to be classified:

Student Age Credit_Score Will_Buy_Computer
Yes Young Regular 29

[ Age! ]

Young Middle Age Older Adult
¥

{ Student!? ] Yes { Credit_Score? ]

No Yes Regular Excellent

()OS0 Bruno Castro da Silva 20



Decision [rees

How likely it is that a given client will buy a computer?

Instance to be classified:

Student Age Credit_Score Will_Buy_Computer
Yes Young Regular 29

lStarts from the root node

Young Middle Age Older Adult

No Yes Regular Excellent

()OS0 Bruno Castro da Silva 2l



Decision [rees

How likely it is that a given client will buy a computer?

Instance to be classified:

Student Age Credit_Score Will_Buy_Computer
Yes Young Regular 29

[ Age! ]

Young Middle Age Older Adult
¥

[ Student!? ] Yes { Credit_Score? ]

No Yes Regular Excellent

()OS0 Bruno Castro da Silva 22



Decision [rees

How likely it is that a given client will buy a computer?

Instance to be classified:

()OS0 Bruno Castro da Silva

Student Age Credit_Score Wi ill_Buy_Computer
Yes Young Regular ?2?

L3

““

“.‘ Age!? ]
Youpg Middle Age Older Adult
“ ‘L
[ Student?®, ] Yes { Credit_Score? ]
*

No Regular Excellent

23



Decision [rees

How likely it is that a given client will buy a computer?

Instance to be classified:

Student Age Credit_Score Will_Buy_Computer
Yes Young Regular 29

[ Age! ]

Young Middle Age Older Adult
¥

Yes { Credit_Score? ]

No Regular Excellent

()OS0 Bruno Castro da Silva 24




Decision [rees

How likely it is that a given client will buy a computer?

Instance to be classified: Predicted Class
Student Age Credit_Score Will_Buy_Computer
Yes Young Regular Yes
0’1
[ Age!? ] 0.*”

Young Middle Age

No Excellent

()OS0 Bruno Castro da Silva 25




Decision [rees

How would the following instance be classified?

Instance to be classified: Predicted Class
Student Age Credit_Score Will_Buy_Computer
No Older Adult Regular No

[ Age! ]

Young Middle Age Older Adult
¥

{ Student!? ] Yes { Credit_Score? ]

Excellent

()OS0 Bruno Castro da Silva 26

No Yes Regular



Decision [rees

Decision trees encode classification rules via (implicit) IF-ELSE statements

Age! ]
Young Middle Age Older Adult
Student!? Credit_Score?
i i Regular i i Excellent

IF Age = Young IF Age = Young IF Age = Older Adult IF Age = Older Adult

AND AND AND AND
IF Student = No IF Student = Yes IF Credit_Score = Regular IF Credit_Score = Excellent

THEN THEN THEN THEN

Will_Buy_Computer=No Will_Buy_Computer=Yes Will_Buy_Computer=No Will_Buy_Computer=Yes

IF Age = Middle Age
THEN
Will_Buy_Computer=Yes

()OS0 Bruno Castro da Silva 27



Decision [rees

Decision trees encode classification rules via (implicit) IF-ELSE statements

How to construct a decision tree
based on training data?

()OS0 Bruno Castro da Silva 28



Decision [rees

e General idea

o Repeat “until classifier is good enough”
m Select the “best” attribute
m Split the instances based on the value of this attribute (new decision rule)

Divide-and-Conquer Strategy

Yes No Yes NoO

Income (normali

o A
NS
w O
o A

Age (normalized)
Bruno Castro da Silva 29



Decision [rees

Divide-and-Conquer over data instances

id Student Age Credit_Score Will_Buy_Computer
) ¢ Yes Young Regular Yes
X2 Yes Middle Age Excellent Yes
X3 No Young Excellent No
X4 No Older Adult Regular No
Xs Yes Older Adult Excellent Yes

()OS0 Bruno Castro da Silva

30



Divide-and-Conquer over data instances

Decision [rees

id Student Age Credit_Score Wi ill_Buy_Computer
X Yes Young Regular Yes
X; Yes Middle Age Excellent Yes
X; No Young Excellent No
Xy No Older Adult Regular No
Xs Yes Older Adult Excellent Yes
Young Older Adult
Middle Age
Will_Buy C Will_Buy C
id | Student Age Credit_Score| omputer id | Student Age Credit_Score| omputer
X| Yes Young Regular Yes X4 No Older Adult Regular No
X; No Young Excellent Yes X;s Yes Older Adult Excellent Yes
Will_Buy C
id | Student Age Credit_Score| omputer
X, Yes Middle Age Excellent Yes
()OS0 Bruno Castro da Silva 31




How to train a decision tree that correctly classifies these examples?

Name Age Gender TrafficTicket Class[:):‘i,ge?'ms'(
John 43 M Yes High Risk
Peter 18 M No Low Risk
Anna 35 F No Low Risk
Paula 19 F No Low Risk
Mark 90 M Yes High Risk
Marisa 19 F Yes High Risk
Bob 30 M No Low Risk

()OS Bruno Castro da Silva

Which attribute to test to determine a driver's label/class?



* How to train a decision tree that correctly classifies these examples!?

Name Age Gender TrafficTicket Class[:):-il\i,gerr\-Risk
John 43 M Yes High Risk
Peter 18 M No Low Risk
Anna 35 F No Low Risk
Paula 19 F No Low Risk
Mark 90 M Yes High Risk
Marisa 19 F Yes High Risk
Bob 30 M No Low Risk

()OS Bruno Castro da Silva

TrafficTicket

Which attribute to test to determine a driver's label/class?



How to train a decision tree that correctly classifies these examples?

Name Age Gender TrafficTicket Class[:):‘i,ge?'ms'(
John 43 M Yes High Risk
Peter 18 M No Low Risk
Anna 35 F No Low Risk
Paula 19 F No Low Risk
Mark 90 M Yes High Risk
Marisa 19 F Yes High Risk
Bob 30 M No Low Risk

But what if the training set is not so “well behaved’?

(c)WSO) Bruno Castro da Silva



How to train a decision tree that correctly classifies these examples?

Name Age Gender TrafficTicket Class[:):‘i,ge?'ms'(
John 43 M Yes High Risk
Peter 18 M No High Risk
Anna 35 F No Low Risk
Paula 19 F No High Risk
Mark 90 M Yes High Risk
Marisa 19 F Yes High Risk
Bob 30 M No Low Risk

But what if the training set is not so “well behaved’?

(c)WSO) Bruno Castro da Silva



How to train a decision tree that correctly classifies these examples?

Name Age Gender TrafficTicket Class[:):‘i,ge?'ms'(
John 43 M Yes High Risk
Peter 18 M No High Risk
Anna 35 F No Low Risk
Paula 19 F No High Risk
Mark 90 M Yes High Risk
Marisa 19 F Yes High Risk
Bob 30 M No Low Risk

()OS Bruno Castro da Silva

TrafficTicket

But what if the training set is not so “well behaved’?

36



How to train a decision tree that correctly classifies these examples?

Name Age Gender TrafficTicket Class[:):-il\i,gerr\-Risk
John 43 M Yes High Risk

Peter 18 M No High Risk =
Anna 35 F No Low Risk @
Paula 19 F No High Risk @
Mark 90 M Yes High Risk
Marisa 19 F Yes High Risk

Bob 30 M No Low Risk <@

()OS Bruno Castro da Silva

TrafficTicket

But what if the training set is not so “well behaved’?

37



* How to train a decision tree that correctly classifies these examples!?

Name Age Gender TrafficTicket Class[:):-il\i,gerr\-Risk
John 43 M Yes High Risk
Peter 18 M No High Risk
Anna 35 F No Low Risk
Paula 19 F No High Risk
Mark 90 M Yes High Risk
Marisa 19 F Yes High Risk
Bob 30 M No Low Risk

()OS Bruno Castro da Silva

TrafficTicket

But what if the training set is not so “well behaved’?

38



* How to train a decision tree that correctly classifies these examples!?

Name Age Gender TrafficTicket Class[:):-il\i,gerr\-Risk
John 43 M Yes High Risk
Peter 18 M No High Risk
Anna 35 F No Low Risk
Paula 19 F No High Risk
Mark 90 M Yes High Risk
Marisa 19 F Yes High Risk
Bob 30 M No Low Risk

TrafficTicket

How to determine which attributes to test at each step along the tree?

()OS Bruno Castro da Silva



General procedure to create a decision tree

Select an attribute to add to the tree (starting from the root) — new node

Add, to this node, one branch for each possible value of the selected attribute

Partition the instances/examples — assign each instance to its corresponding branch,
based on the value of that instance’s attribute

Repeat these steps, recursively, for each resulting partition (i.e., for each children node)

{John=H, Peter=H, Paula=H, Mark=H, Marisa=H,

Name Age Gender TrafficTicket CIaSSE):‘i,%?'RiSK Anna=L., Bob=L}
John 43 M Yes High Risk
Peter 18 M No High Risk
Anna 35 F No Low Risk T F
Paula 19 F No High Risk
Mark 90 M Yes High Risk
Marisa 19 F Yes High Risk
Bob 30 M No Low Risk

()OS0 Bruno Castro da Silva

40



General procedure to create a decision tree

Select an attribute to add to the tree (starting from the root) — new node

Add, to this node, one branch for each possible value of the selected attribute

Partition the instances/examples — assign each instance to its corresponding branch,
based on the value of that instance’s attribute

Repeat these steps, recursively, for each resulting partition (i.e., for each children node)

{John=H, Peter=H, Paula=H, Mark=H, Marisa=H,

Name Age Gender | TrafficTicket | 255 High-Risk Anna=L, Bob=L}

John 43 M Yes High Risk

Peter 18 M No High Risk

Anna 35 F No Low Risk

: . {John=H, Mark=H, T F {Peter=H, Paula=H,

Paula 19 F No High Risk Marisa=H} Anna=L, Bob=L}
Mark 90 M Yes High Risk
Marisa 19 F Yes High Risk

Bob 30 M No Low Risk

()OS0 Bruno Castro da Silva

41



General procedure to create a decision tree

Select an attribute to add to the tree (starting from the root) — new node

Add, to this node, one branch for each possible value of the selected attribute

Partition the instances/examples — assign each instance to its corresponding branch,
based on the value of that instance’s attribute

Repeat these steps, recursively, for each resulting partition (i.e., for each children node)

{John=H, Peter=H, Paula=H, Mark=H, Marisa=H,

Name Age Gender | TrafficTicket | 255 High-Risk Anna=L, Bob=L}

John 43 M Yes High Risk

Peter 18 M No High Risk

Anna 35 F No Low Risk

: . {John=H, Mark=H, T F {Peter=H, Paula=H,
Paula 19 F No High Risk Marisa=H} Anna=L, Bob=L}
Mark 90 M Yes High Risk
<

Marisa 19 F Yes High Risk Age<20

Bob 30 M No Low Risk

()OS0 Bruno Castro da Silva

42



General procedure to create a decision tree

Select an attribute to add to the tree (starting from the root) — new node

Add, to this node, one branch for each possible value of the selected attribute

Partition the instances/examples — assign each instance to its corresponding branch,
based on the value of that instance’s attribute

Repeat these steps, recursively, for each resulting partition (i.e., for each children node)

{John=H, Peter=H, Paula=H, Mark=H, Marisa=H,

Name Age Gender | TrafficTicket | 255 High-Risk Anna=L., Bob=L}

John 43 M Yes High Risk

Peter 18 M No High Risk

Anna 35 F No Low Risk

: . {John=H, Mark=H, F {Peter=H, Paula=H,

Paula 19 F No High Risk Marisa=H} Anna=L, Bob=L}
Mark a0 M Yes High Risk
Marisa 19 F Yes High Risk

Bob 30 M No Low Risk

()OS0 Bruno Castro da Silva

{Peter=H, Paula=H} , Bob=L}

43



Learning a Decision Tree

* General procedure to create a decision tree
|. Select an attribute to add to the tree (starting from the root) — new node
2. Add, to this node, one branch for each possible value of the selected attribute

3. Partition the instances/examples — assign each instance to its corresponding branch,
based on the value of that instance’s attribute

4. Repeat these steps, recursively, for each resulting partition (i.e., for each children node)

When to stop?

a. When all instances of a given partition/node belong to the same class
Then, create a leaf node labeled with that class
b. When there are no more attributes that be tested
or

When a partition is empty (i.e., there are no instances associated with it)

Then, create a leaf node labeled with the majority class among the instances

()OS0 Bruno Castro da Silva 44



Learning a Decision Tree

e General Iillidure to create a decision tree

()OS0 Bruno Castro da Silva

45



Selecting an Attribute to Test

* Ciriterion/heuristic for selecting which attribute to test

* Most informative attribute

* attribute that best splits instances according to their classes

° ldeally, we should select an attribute such that

* “all instances of class A go to one branch, all instances of class B to the other branch”

° i.e., attribute that results in partitions whose instances are as homogenous as possible

* all instances in that partition belong to the same class (in that case, add new leaf node)

Good _Credit_ Score { Has_a Job ]
/ wo Ye/ wo
yes yes
yes no yes yes
yes no no no
yes no no no
no no

4 yes 0 yes 2 yes 2 yes

I no 4 no 2 no 3 no

“Good_Credit_Score?” seems to be more informative than “Has_a_Job”




Selecting an Attribute to Test

* Ciriterion/heuristic for selecting which attribute to test

* Most informative attribute

* attribute that best splits instances according to their classes
° ldeally, we should select an attribute such that

* “all instances of class A go to one branch, all instances of class B to the other branch”

° i.e, attribute that results in partitions whose instances are as homogenous as possible

* all instances in that partition belong to the same class (in that case, add new leaf node)

Good Credit Score Has a Job

Yes Yes
yes no yes yes
yes no yes yes
yes no no no

"Goodness of Split”

“Good_Credit_Score?” seems to be more informative than “Has_a_Job”




Selecting an Attribute to Test

° ldeally, we should select an attribute such that
* “all instances of class A go to one branch, all instances of class B to the other branch”

° i.e., attribute that results in partitions whose instances are

@s homogenous a} possible

* How to quantify how homogenous a set of instances is?
- Information, or entropy

* Information is measured in bits (or fractions of a bit)

Let’s suppose we test Age, and the instances associated with Age=Young look like this

Was that a useful attribute to test?

Do we have a good idea about whether
the person is going to repay the loan or not?

()OS0 Bruno Castro da Silva 48




Selecting an Attribute to Test

° ldeally, we should select an attribute such that

* “all instances of class A go to one branch, all instances of class B to the other branch”

° i.e., attribute that results in partitions whose instances are

@s homogenous a} possible

* How to quantify how homogenous a set of instances is?

- Information, or entropy

* Information is measured in bits (or fractions of a bit)

Let’s suppose we test Age, and the instances associated with Age=Young look like this

()OS0 Bruno Castro da Silva

©ee0

Was that a useful attribute to test?

Do we have a good idea about whether
the person is going to repay the loan or not?

49



Selecting an Attribute to Test

° ldeally, we should select an attribute such that
* “all instances of class A go to one branch, all instances of class B to the other branch”

° i.e., attribute that results in partitions whose instances are

@s homogenous a} possible

* How to quantify how homogenous a set of instances is?
- Information, or entropy

* Information is measured in bits (or fractions of a bit)

Let’s suppose we test Age, and the instances associated with Age=Young look like this

GO0

Was that a useful attribute to test?

Do we have a good idea about whether
the person is going to repay the loan or not?

()OS0 Bruno Castro da Silva 50




Selecting an Attribute to Test

° ldeally, we should select an attribute such that

* “all instances of class A go to one branch, all instances of class B to the other branch”
as homogenous a$ possible

* How to quantify how homogenous a set of instances is?

° i.e., attribute that results in partitions whose instances are

- Information, or entropy

* Information is measured in bits (or fractions of a bit)

Let’s suppose we test Age, and the instances associated with Age=Young look like this

ENTROPY
0606 G660 6600
Low Medium High

()OS0 Bruno Castro da Silva 51



Selecting an Attribute to Test

* How to quantify how homogenous a set of instances is?
- Information, or entropy

* Information is measured in bits (or fractions of a bit)

ENTROPY
0 Will repay loan \, ,. | » | |
| 9000 G660 6600
o Will not repay loan
Low Medium High

o Intuitively, quantifies how random a given quantity (e.g., class) is within a dataset
O Associated with how hard it is to predict the class based on an attribute

o Higher entropy
— instances of a same class are all mixed up

— testing the attribute that resulted in that partition of the data was not very useful
Bruno Castro da Silva 52



Selecting an Attribute to Test

* How to quantify how homogenous a set of instances is?
- Information, or entropy

* Information is measured in bits (or fractions of a bit)

* Given a distribution of labels/classes in a partition of the data
* how much information is required to predict the class

* this is the entropy of that distribution

* I(pl,pg, e 7pn) = —P1 10g2(P1) — P2 10%2(P2) SR Y0) Ing(Pn)

{John=H, Peter=H, Paula=H, Mark=H, Marisa=H,
Anna=L, Bob=L}

()OS0 Bruno Castro da Silva 53



Selecting an Attribute to Test

* How to quantify how homogenous a set of instances is?
- Information, or entropy

* Information is measured in bits (or fractions of a bit)

* Given a distribution of labels/classes in a partition of the data
* how much information is required to predict the class

* this is the entropy of that distribution

* Ipz, . ,pn) = —P1 1Og2(p1) — P2 Ing(pz) co+ 7 Pn Ing(pn)

Probability that class #1 (H) {John=H, Peter=H, Paula=H, Mark=H, Marisa=H,
appears in the partition of the data Anna=L, Bob=L}

()OS0 Bruno Castro da Silva 54



Selecting an Attribute to Test

* How to quantify how homogenous a set of instances is?
- Information, or entropy

* Information is measured in bits (or fractions of a bit)

* Given a distribution of labels/classes in a partition of the data
* how much information is required to predict the class

* this is the entropy of that distribution

* I(pl- . 7pn) = —P1 10g2(P1) — P2 10%2(P2) SR Y0) Ing(Pn)

Probability that class #2 (L) {John=H, Peter=H, Paula=H, Mark=H, Marisa=H,
appears in the partition of the data Anna=L, Bob=L}

()OS0 Bruno Castro da Silva 55



Selecting an Attribute to Test

How to quantify how homogenous a set of instances is?

Information, or entropy

Information is measured in bits (or fractions of a bit)

this is the entropy of that distribution

* I(p17p27 S 7p'n,) — —P1 lng(pl)

{John=H, Peter=H,
Anna=L, Bob=L}

(c)WSO) Bruno Castro da Silva

Pr(H) = 2/4 1(2/4, 2/4) = -2/4 log2
Pr(L) = 2/4

#-2/4 10g2(2/4)

56



Selecting an Attribute to Test

How to quantify how homogenous a set of instances is?

Information, or entropy

Information is measured in bits (or fractions of a bit)

this is the entropy of that distribution

* I(p17p27 S 7p'n,) — —P1 10g2(p1) o

{John=H, Peter=H}

(c)WSO) Bruno Castro da Silva

Pr(H) = 2/2 1(2/2, 0/2) = -2/2 log2
Pr(L) = 0/2

20/2 10g2(0/2)

57



Selecting an Attribute to Test

How to quantify how homogenous a set of instances is?
Information, or entropy

Information is measured in bits (or fractions of a bit)

this is the entropy of that distribution

* I(p17p27 S 7p'n,) — —P1 lng(pl) o

{John=A, Peter=A, Paula=A, Mark=A, Marisa=A, |(5/7, 2/7) = -5/7 loc

Anna=B, Bob=B} =

Pr(A) = 5/7
Pr(B) = 2/7

(c)WSO) Bruno Castro da Silva

58



Decision tree to predict whether a person will play tennis

Weather Temperature Humidity Windy PlayTennis
Sunny Hot High False No
Sunny Hot High True No

Overcast Hot High False Yes
Rainy Mild High False Yes
Rainy Cool Normal False Yes
Rainy Cool Normal True No

Overcast Cool Normal True Yes
Sunny Mild High False No
Sunny Cool Normal False Yes
Rainy Mild Normal False Yes
Sunny Mild Normal True Yes

Overcast Mild High True Yes

Overcast Hot Normal False Yes
Rainy Mild High True No

(c)WSO) Bruno Castro da Silva

Which attribute to test first?

Let’s consider testing VWeather

Original dataset: 9 instances “Yes"
5 instances "No"

yes yes yes yes yes yes yes yes yes
No NO NO NO NO

Sunny

yes

yes
no
no
no

Overcast

.

yes
yes
yes
yes

Rainy

yes

yes

yes
no
no

59



Decision tree to predict whether a person will play tennis

Entropy of the original dataset:

1(9/14, 5/14) = -9/14 log2(9/14) -5/14 log2(5/14)
= 0.940 bits

Entropy of partitions resulting from testing Weather:

Weather=Sunny
1(2/5, 3/5) = -2/5 log2(2/5) -3/5 log2(3/5)

= 0.971 bits
Weather=0Overcast

1(4/4, 0/4) = -4/4 loga(4/4) -0/4 log2(0/4)
= 0 bits
Weather=Rainy
1(3/5, 2/5) = -3/5 log2(3/5) -2/5 log2(2/5)
= 0.971 bits
Average entropy of the resulting partitions

(5/14)x0.97 | + (4/14)x0 + (5/14)x0.97 1 = 0.693 bits

Bruno Castro da Silva

Which attribute to test first?

Let’s consider testing VWeather

Original dataset: 9 instances “Yes"
5 instances "No"

yes yes yes yes yes yes yes yes yes
no NO NO NO NO

Sunny @ Rainy

yes Overcast yes
yes i yes
no yes yes
no yes no
no yes no

- 60



Decision tree to predict whether a person will play tennis

Entropy of the original dataset: By testing the attribute Weather,

1(9/14, 5/14) = -9/14 log2(9/14) -5/14 log2(5/14) the entropy of the classes decreased by

= 0.940 bits 0.940 - 0.693 = 0.247 bits
Entropy of partitions resulting from testing Weather: *
Weather=Sunny

1(2/5, 3/5) = -2/5 log2(2/5) -3/5 log2(3/5)
= 0.971 bits
Weather=0Overcast

1(4/4, 0/4) = -4/4 loga(4/4) -0/4 log2(0/4)
= 0 bits
Weather=Rainy
1(3/5, 2/5) = -3/5 log2(3/5) -2/5 log2(2/5)
= 0.971 bits
Average entropy of the resulting partitions

< (5/14)x0.971 + (4/14)x0 + (5/14)x0.971 = 0.693 bits

Bruno Castro da Silva

Information Gain

quantifies how much information
about the class is obtained
by testing a given attribute

The algorithm will test,
first, the attributes that

result in higher information gain

61



Information Gain

The algorithm will test,

quantifies how much information fir§t, t.he att_l’ibUteS t.hat .
about the class is obtained result in higher information gain

by testing a given attribute

Gain: 0.029 bits

@ Gain: 0.247 bits
Sunny Rainy Hot / |

— Mild
— Overcast
yes yes
es es
fod IR [ el iy [
no yes yes no ¢ S yes
no ye no
no yes no — yes
no yes no es - -
—1 | — _ _ v | Gain: 0.048 bits
— ______ |Gain: 0.152 bits o
@ False
High / ' Normal
yes yes
yes yes yes yes
yes yes yes yes
yes yes yes no
no yes yes no
no yes yes no
no yes no B
no no no
' Bruno Castro da Silva —— — — 62




Sunny Rainy
—_— Overcast
yes ! yes
yes S yes
no yes yes
no yes no
no yes no
o yes o
No NO NO Sunny Rainy
Ovelcast

Hot | Cool

Mild

o
no
yes
no

|Gain: 0.571 bits |

m Bruno Castro da Silva

We have decided that the 15t attribute to test is VWeather
What should be tested next, on the Sunny branch?

i.e., should we test Temperature, Windy, or Humidity?

nonono Sunny Rainy nonono Sunny Rainy
m Overcast Ove cast
i Normal
False True High ,
no
yes o
no o
no had

Gain: 0.020 bits ‘ Gain: 0.971 bits \

63



Sunny Rainy
—_— Overcast
yes 1 yes
yes I yes
no yes yes
no yes no
no yes no
E— yes I
yes yes @
N0 NO NO Igynny Rainy
Ovelcast

Hot | Cool

Mild

o
no
yes
no

|Gain: 0.571 bits |

()OS0 Bruno Castro da Silva

We have decided that the 15t attribute to test is VWeather
What should be tested next, on the Sunny branch?

i.e., should we test Temperature, Windy, or Humidity?

no N0 N0 |gynny Rainy N0 NO NO Igynny Rainy
Ovelcast Ove cast
Falsrue Hig_h/ Normal
ves no

no

no
no

no

Gain: 0.020 bits ‘ Gain: 0.971 bits \

64



Bruno Castro da Silva

Sunny

Ove'cast

High /

no
no
no

Normal

Rainy

65



()OS0 Bruno Castro da Silva

Normal

Rainy

66



()OS Bruno Castro da Silva

Sunny ’ﬁ Rainy

Overcast
Humidity |
High .. Normal
ING r'es

What should be tested next, on the Overcast branch?

i.e., should we test Temperature, Windy, or Humidity?

Repeat the same process, recursively...

67



Bruno Castro da Silva

NG 1Co
no yes
no yes
no

yes
yes
yes
yes

no

68



Sunny | Rainy

—_ Overcast

yes 1 yes
yes e yes
no yes yes
no yes no
no yes no

E— yes —

Bruno Castro da Silva



Sunny Rainy
—_— Overcast
yes 1 yes
yes I yes
no yes yes
no yes no
no yes no
E— yes I
yes yes @
N0 NO NO Igynny Rainy
Ovelcast

Hot | Cool

Mild

o
no
yes
no

|Gain: 0.571 bits |

()OS0 Bruno Castro da Silva

We have decided that the 15t attribute to test is VWeather
What should be tested next, on the Sunny branch?

i.e., should we test Temperature, Windy, or Humidity?

no N0 N0 |gynny Rainy N0 NO NO Igynny Rainy
Ovelcast Ove cast
Falsrue Hig_h/ Normal
ves no

no

no
no

no

Gain: 0.020 bits ‘ Gain: 0.971 bits \

70



Bruno Castro da Silva

Sunny

Ove'cast

High /

no
no
no

Normal

Rainy

71



()OS0 Bruno Castro da Silva

Normal

Rainy

72



Review: Selecting an Attribute to Test

* What should be tested next, on the Overcast branch?

° i.e., should we test Temperature, Windy, or Humidity?

Repeat the same process, recursively...

()OS0 Bruno Castro da Silva

73



Bruno Castro da Silva

NG 1Co
no yes
no yes
no

yes
yes
yes
yes

74



We have discussed one possible criterion for selecting which attribute to test

Information Gain

Many other criteria have been proposed — each with different properties
Intuitively:
A split that keeps the same proportion of classes in each partition is useless

A split where the instances in each partition have the same class is useful!

Main criteria for selecting which attribute to test:

* Information Gain - ID3 Algorithm (Quilan, 1987)

Information Gain Ratio - C4.5 Algorithm (Quilan, 1988)

Gini Impurity - CART Algorithm (Breiman, 1984)

()OS0 Bruno Castro da Silva

75



Criteria for Selecting an Attribute to Test

* We have discussed one possible criterion for selecting which attribute to test

 Information Gain

* Many other criteria have been proposed — each with different properties
* Intuitively:
* A split that keeps the same proportion of classes in each partition is useless

* A split where the instances in each partition have the same class is useful!

All algorithms are based on the same underlying tree-learning strategy
Differ with respect to the criterion used to select which attribute to test at each point

All are greedy algorithms: select the best attribute to use when splitting a node,
and never revisit this decision (no backtracking)

()OS0 Bruno Castro da Silva 76



A Decision Tree Learning algorithm

Function: decision_tree( D, L)

Input: Adataset D = {(xq,V1), (x3,V5), ..., (X5, V) } with n training instances
A list, L, of attributes that can still be tested

*Create a new node, N

(. If all instances in D belong to the same class, y R
Define node N as a leaf node labeled with y and return it
- If there are no more attributes that can be tested (i.e., if L. = )
% Define node N as a leaf node labeled with the majority class in D, and return it )

Let A be the best attribute to split the dataset D

«Define node N as a decision node that tests attribute 4

Main criteria for selecting which attribute to test:
Information Gain - ID3 Algorithm
Information Gain Ratio - C4.5 Algorithm

Gini Impurity - CART Algorithm

Bruno Castro da Silva

77



A Decision Tree Learning algorithm

Function: decision_tree( D, L)

Input: Adataset D = {(xq,V1), (x3,V5), ..., (X5, V) } with n training instances
A list, L, of attributes that can still be tested

«Create a new node, N

(. If all instances in D belong to the same class, y R
Define node N as a leaf node labeled with y and return it
- If there are no more attributes that can be tested (i.e., if L. = )
% Define node N as a leaf node labeled with the majority class in D, and return it )
*Let A be the best attribute to split the dataset D
*Define node N as a decision node that tests attribute A
-Remove A from the list of attributes that can still be tested: L: = L — {A}
m_et I/ be a list with all different values of attribute A considering the instances in dataset D \

*For each attribute value v € V:
Let D,, be the partition of D containing all instances whose attribute A = v
If D,, is empty

Let 1}, be a leaf node labeled with the majority class in D
*Else

Let 1, be a sub-tree responsible for classifying the instances in D,,: T,,: =decision_tree( D,, L)
K - Create an edge from node N to the root of T, , where the edge is labeled with attribute value v /

*Return N

Bruno Castro da Silva

78



We have discussed one possible criterion for selecting which attribute to test

Information Gain

Many other criteria have been proposed — each with different properties
Intuitively:
A split that keeps the same proportion of classes in each partition is useless

A split where the instances in each partition have the same class is useful!

Main criteria for selecting which attribute to test:

* Information Gain - ID3 Algorithm (Quilan, 1987)

Information Gain Ratio - C4.5 Algorithm (Quilan, 1988)

Gini Impurity - CART Algorithm (Breiman, 1984)

()OS0 Bruno Castro da Silva

79



This is the criterion discussed earlier — results in a method known as D3

Intuitively, it selects the attribute A that maximizes the difference between:
The entropy of the original dataset D (before splitting it based on A)

The average entropy of the resulting partitions if we split dataset D based on A

Formally:

Let p; be the probability that the label I occurs in instances in a dataset D

m
Let [(D) = — ), p;log,(p;) be the entropy of an arbitrary dataset D, where m is the number of classes/labels
i=1

Assume that the attribute A can take up v values

(that is, if we split D based on attribute A, we will end up with U partitions)

& Ipjl
Let IIlfOA(D) = Z H

I(D;) be the average entropy of the partitions resulting from splitting D based on A
j=1

Let Gaing (D) = I(D) — Info, (D) be the Information Gain resulting from splitting based on attribute A

At each step, the algorithm splits the instances based on the attribute A with highest Information Gain

Bruno Castro da Silva 80



Information Gain

This is the criterion discussed earlier — results in a method known as D3

Intuitively, it selects the attribute A that maximizes the difference between:
The entropy of the original dataset D (before splitting it based on A)

The average entropy of the resulting partitions if we split dataset D based on A

Often results in a decision tree that is not necessarily the “simplest” one

Intuitively, it often chooses attributes with many possible values (like Student ID, Name, etc)

Student_ID Student Age Credit_Score Wi ill_Buy_Computer
id_1 Yes Young Regular Yes
id_2 Yes Middle Age Excellent No
id_3 No Young Excellent No
id_4 No Older Adult Regular Yes

[ Student_ID? ]

Perfect split!

With just one test, can “predict” the class perfectly

But it is clearly overfitting (“memorizing” the dataset)

(c)WSO) Bruno Castro da Silva 8l



Information Gain

This is the criterion discussed earlier — results in a method known as D3

Intuitively, it selects the attribute A that maximizes the difference between:
* The entropy of the original dataset D (before splitting it based on A)

* The average entropy of the resulting partitions if we split dataset D based on A

Often results in a decision tree that is not necessarily the “simplest” one

Intuitively, it often chooses attributes with many possible values (like Student ID, Name, etc)

Student_ID Student Age Credit_Score Will_Buy_Computer
id_1 Yes Young Regular Yes
id_2 Yes Middle Age Excellent No
id_3 No Young Excellent No
id_4 No Older Adult Regular Yes

criterion, implemented

algorithm, tries to mitigate this issue

()OS0 Bruno Castro da Silva 82



We have discussed one possible criterion for selecting which attribute to test

Information Gain

Many other criteria have been proposed — each with different properties
Intuitively:
A split that keeps the same proportion of classes in each partition is useless

A split where the instances in each partition have the same class is useful!

Main criteria for selecting which attribute to test:
Information Gain - ID3 Algorithm (Quilan, 1987)

* Information Gain Ratio - C4.5 Algorithm (Quilan, 1988)

Gini Impurity - CART Algorithm (Breiman, 1984)

()OS0 Bruno Castro da Silva

83



Information Gain Ratio

Name Age Gender TrafficTicket Classl:):‘ilge?'RiSK
John 43 M Yes High Risk
Peter 18 M No Low Risk
Anna 35 F No Low Risk
Paula 19 F No Low Risk
Mark 90 M Yes High Risk
Marisa 19 F Yes Low Risk
Bob 30 M No Low Risk

“Adjusts” Information Gain criterion to lessen the bias towards attributes that create many branches

Intuition:

[ TrafficTicket ]

{John,
Mark,

Marisa}

Yes

|D1] =3

3
Pr(D,) =

()OS Bruno Castro da Silva

7

w\o

|Dy| =4
4
7

Pr(D;) =

{John}

|D;| =1
Pr(D —1
r( 1)—7

{Peter

}

{Anna {Paula

}

}

D2l =1 |Ds|=1 |D4] =1

1 1 1 1 1
PrD;) =5 Pr(Ds) =5 Pr(Dy) == Pr(Ds) == Pr(De) == Pr(D;) ==

{Mark
}

|Ds| =1

|De| = 1

{Bob}

|D;| =1

—_

84



Information Gain Ratio

“Adjusts” Information Gain criterion to lessen the bias towards attributes that create many branches
Intuition:

[ TrafficTicket ] [

{John,
Mark,
Marisa}

. {Peter {Anna {Paula {Mark o
bl ) ) ) ) m i

D] =1 |D;| =1 D3| =1 |Dy| = 1 |Ds| =1 |Dg| = 1 |D;] =1

=

1 1 1 1 1
PriDy) =5 Pr(Dy) =5 Pr(Ds) =7 Pr(Dy) =5 Pr(Ds) =z Pr(De) =7 Pr(D;) =

N -

3
Pr(D;) = 7 Pr(D,) =

N

If there are lots of branches (e.g., if we split by Name, there are as many branches as attribute values!)

Then these probabilities will be very similar/homogenous

How to quantify how “homogeneous” these quantities are?

We've seen something like this before... Entropy!

(c)WSO) Bruno Castro da Silva 85



Information Gain Ratio

How to quantify how “homogeneous"” these quantities are!?

We've seen something like this before... Entropy!

[ TrafficTicket ] *

{John,
Mark,
Marisa}

(\'b-

?S\

ee

{John} {Peter {Anna {Paula {Mark

} } } }

|D;| =1 |D,| =1 |Ds;| =1 |Dy| =1 |Ds| =1 |Dg| =1 |D;| =1

1 1 1 1 1 1
Pr(D,) = = Pr(D,) = 7 Pr(D3) = = Pr(D,) = C Pr(Ds) = = Pr(Dg) = = Pr(D;) =

S -

()OS0 Bruno Castro da Silva

86



Information Gain Ratio

* How to quantify how “homogeneous” these quantities are!?

* We've seen something like this before... Entropy!

3.3\ 4 (4
TrafficTicket ] * _2 (_) _z (_)
[ | 71082\7) ~71082\7

{John,
Mark,
Marisa}

{Peter {Anna {Paula
} } }

A — A — [ — A — A — A — N —
Tr 1) — = r 2) — r 3) = T 1) = r 5 = — r 6 = — Pr 7) ==
’ / / / ()OS0 Bruno Castro da Silva 87

{John}




Information Gain Ratio

* How to quantify how “homogeneous” these quantities are!?

* We've seen something like this beforeC.

()OS0 Bruno Castro da Silva 88



Information Gain Ratio

How to quantify how “homogeneous"” these quantities are!?

We've seen something like this before... Entropy!

[ TrafficTicket ] ~31og, (ﬁ)
. 7 7
{John,
Mark,
Marisa}
1 1
(5) - 7108:

{Anna {Paula {Mark
} } }

()OS Bruno Castro da Silva

— which is called, in this context, Split_Info

g (5)
719827

(1) 1 (1) 1 (1) 1 (1) 1 (1) L
7) " 7°82\7) T 7°982\7) T 77%82\7) T 779627 70g2(7)

89



Information Gain Ratio

How to quantify how “homogeneous"” these quantities are!?

We've seen something like this before... Entropy! — which is called, in this context, Split_Info
split_Info(TrafficTicket) = _>1og, (2) = F10g, (&
[ TrafficTicket ] piit_ — 7108217 ) T 51082 \5

= 0.98

{John,
Mark,
Marisa}

Split_Info(Name) =
5108 (7) = 7102 (5) = 108 (7) =5 08 7) =100 () =508 (7) =712 3)

= 2.8

{Anna {Paula
} }

()OS Bruno Castro da Silva

90



Information Gain Ratio

How to quantify how “homogeneous"” these quantities are!?

We've seen something like this before... Entropy! — which is called, in this context, Split_Info
Name Age Gender TrafficTicket Class[:):‘i,%?'RiSk
John 43 M Yes High Risk
Peter 18 M No Low Risk
Anna 35 F No Low Risk
Paula 19 F No Low Risk
Mark 90 M Yes High Risk
Marisa 19 F Yes Low Risk
Bob 30 M No Low Risk
. g 3 3 4 4 —
Split_Info(TrafficTicket) = _>jog, <_) — —log, (_) = 0.98
7 7 7 7
. _ 1 1\ 1 1\ 1 1\ 1 1\ 1 1\ 1 1\ 1 1 —
Spllt_lnfO(N ame) - —710g2 (7) - 710g2 (7) - 710g2 (7) - 710g2 (7) - 710g2 (7) - 710g2 (7) - 710g2 (7) - 2 -8

The larger value of Split_Info for Name suggests that this is a worse split than TrafficTicket

()OS Bruno Castro da Silva



Information Gain Ratio

* The Information Gain Ratio combines two “measures" of how good a split (based on attribute A) is
* Its Information Gain, as previously defined — Gaing(D) — higher is better

* Its Split_Info — Split_Info(A) — higher is worse

GainA (D) Name

Gain_Ra t]O ( A, D) — . Age Gender TrafficTicket | Class: High-Risk Driver
Split_Info(A) John 43 M Yes High Risk
Peter 18 M No Low Risk
Anna 35 F No Low Risk
Paula 19 F No Low Risk
Mark 90 M Yes High Risk
Marisa 19 F Yes Low Risk
Bob 30 M No Low Risk
Split_Info(TrafficTicket) = _§1Og2 (5) _4 log, (il) = 0.98
7 7 7 7
Spllt_lnfo(N ame) - —;log2 (;) — ;log2 (;) — ;logz G) —;logz (;) — ;logz (;) —;logz (;) — ;logz (;) — 2 8

The larger value of Split_Info for Name suggests that this is a worse split than TrafficTicket

()OS Bruno Castro da Silva



Information Gain Ratio

* The Information Gain Ratio combines two “measures" of how good a split (based on attribute A) is
* Its Information Gain, as previously defined — Gaing(D) — higher is better

* Its Split_Info — Split_Info(A) — higher is worse

; . GainA (D ) Name Age Gender TrafficTicket | Class: High-Risk Driver
Gain_Ratio(4,D) = Sol i

plit_Info(A) John 43 M Yes High Risk

Peter 18 M No Low Risk

Anna 35 F No Low Risk

Paula 19 F No Low Risk

Mark 90 M Yes High Risk

Marisa 19 F Yes Low Risk

Bob 30 M No Low Risk

GainTrafficTicket(D) = 0.466

Split_Info(TrafficTicket)= (.98

GaiI‘IName(D)= 0.86
Split_Info(Name)= 2.8

()OS0 Bruno Castro da Silva



Information Gain Ratio

* The Information Gain Ratio combines two “measures" of how good a split (based on attribute A) is

* Its Information Gain, as previously defined — Gaing(D)

* Its Split_Info — Split_Info(4)

Gaing (D)

Gain_Ratio(4,D) = Split_Info(A)

GainTrafficTicket(D) = 0.466

Split_Info(TrafficTicket)= (.98

GaiI‘IName(D)= 0.86
Split_Info(Name)= 2.8

()OS Bruno Castro da Silva

— higher is worse

— higher is better

Name Age Gender TrafficTicket | Class: High-Risk Driver
John 43 M Yes High Risk
Peter 18 M No Low Risk
Anna 35 F No Low Risk
Paula 19 F No Low Risk
Mark 90 M Yes High Risk
Marisa 19 F Yes Low Risk
Bob 30 M No Low Risk

In terms of Information Gain only, Name looks like a good split
However, its Split_Info suggests that Name it’s a bad split

Let’s combine these into a single score that takes both into account

Gain_Ratio!

94



Information Gain Ratio

The Information Gain Ratio combines two “measures” of how good a split (based on attribute A) is
Its Information Gain, as previously defined — Gaing(D) — higher is better

Its Split_Info — Split_Info(A) — higher is worse

Gaing (D) In terms of Information Gain only, Name looks like a good split
Split_Info(A) However, its Split_Info suggests that Name it’s a bad split

\

Let’s combine these into a single score that takes both into account
Gain_Ratio!

Gain_Ratio(4,D) =

GainTrafficTicket(D) = 0.466

466
Gain_Ratio(TrafficTicket, D) = —— = 0.475
Split_Info(TrafficTicket)= (.98 0.98

GaiI‘IName(D) = (.86
Split_Info(Name)= 2.8

_ _ 0.86
Gain_Ratio(Name, D) = 58 - 0.307

(c)WSO) Bruno Castro da Silva 95



Information Gain Ratio

The Information Gain Ratio combines two “measures” of how good a split (based on attribute A) is
Its Information Gain, as previously defined — Gaing(D) — higher is better

Its Split_Info — Split_Info(A) — higher is worse

Gaing (D)

Gain_Ratio(4,D) = Split Info(A)

In terms of Information Gain only, Name looks like a good split
However, its Split_Info suggests that Name it’s a bad split \

Let’s combine these into a single score that takes both into account
Gain_Ratio!

0.466
Gain_Ratio(TrafficTicket, D) = 098 = 0.475 * This criterion “understands” that
splitting based on TrafficTicket
is better than splitting based on Name

. . 0.86
Gain_Ratio(Name, D) = -8 - 0.307

(c)WSO) Bruno Castro da Silva 26



We have discussed one possible criterion for selecting which attribute to test

Information Gain

Many other criteria have been proposed — each with different properties
Intuitively:
A split that keeps the same proportion of classes in each partition is useless

A split where the instances in each partition have the same class is useful!

Main criteria for selecting which attribute to test:
Information Gain - ID3 Algorithm (Quilan, 1987)

Information Gain Ratio - C4.5 Algorithm (Quilan, 1988)

* Gini Impurity - CART Algorithm (Breiman, 1984)

()OS0 Bruno Castro da Silva

97



Gini Criterion

* Oiriginally proposed to quantify how uneven income is across a population

20 25 30 35 40 45 50 55 60 65

GINI coefficients (%) =

* Gini coefficient — how uneven income/wealth distribution across a population is

* Gini
* Gini

()OS0 Bruno Castro da Silva

| — very uneven income/wealth distribution across a population

0 — very even income/wealth distribution across a population

98



Gini Criterion

* Gini coefficient — how uneven income/wealth distribution across a population is

* |n the context of decision trees

* how uneven (or non-homogeneous) are the classes after a split

Let’s suppose we test Age, and the instances associated with Age=Young look like this

COoe

®000 ©600

Even “Medium” Uneven
Pr(@) =1 Pr(@) =3/4 Pr(@) =2/4
Pr(@) =0 Pr(@ =1/4 Pr(@ =2/4

()OS0 Bruno Castro da Silva 99



Gini Criterion

* Gini coefficient — how uneven income/wealth distribution across a population is

* |n the context of decision trees

* how uneven (or non-homogeneous) are the classes after a split

(Gini(D) =1-(Pr(@)2+ Pr(O)Q)J

Let’s suppose we test Age, and the instances associated with Age=Young look like this

P006 G660 6600

Pr(@) =1 Pr(@) =3/4 Pr(@) =2/4
Pr(@) =0 Pri@ =1/4 Pr(@ =2/4

. 1— (12 + 0?) 1-((B/4)*+1/H)5 1-((2/9)*+ (2/9)3)
Gini = _, = 0.375 =05

()OS Bruno Castro da Silva 100




Gini Criterion

* Gini coefficient — how uneven income/wealth distribution across a population is

* |n the context of decision trees

* how uneven (or non-homogeneous) are the classes after a split

[Gini(D) =1-(Pr(@)2+ Pr(O)Q)J

Let’s suppose we test Age, and the instances associated with Age=Young look like this

P006 G660 6600

Even “Medium” Uneven
.. 1—-(1%+0%) 1-(B/4*+ 1/ 1-(2/9H*+2/HD
Gini = _ — 0.375 — 0.5

* more homogenous partition — ideal result of a split

(smaller value of the Gini coefficient)
Bruno Castro da Silva 101



In the context of decision trees

how uneven (or non-homogeneous) are the classes after a split

[Gini(D) =1-(Pr(@)2+ Pr(O)Z)]

More generally, if there are m classes in a dataset D

r

.

Gini(D) = 1 — (igl(pi)z)

~

J

where p; be the probability that the label/class I occurs in instances in a dataset D

Bruno Castro da Silva

102



Decision tree to predict whether a person will play tennis

Let’s consider testing VWeather

Original dataset: 9 instances “Yes"
5 instances "No"

yes yes yes yes yes yes yes yes yes
NO NO NO NO NO

Weather Temperature Humidity Windy PlayTennis
Sunny Hot High False No
Sunny Hot High True No

Overcast Hot High False Yes
Rainy Mild High False Yes
Rainy Cool Normal False Yes
Rainy Cool Normal True No

Overcast Cool Normal True Yes
Sunny Mild High False No
Sunny Cool Normal False Yes
Rainy Mild Normal False Yes
Sunny Mild Normal True Yes

Overcast Mild High True Yes

Overcast Hot Normal False Yes
Rainy Mild High True No

()OS Bruno Castro da Silva

Sunny Rainy
yes Overcast ye:
yes 4 yes

no yes yes
no yes no
no yes no

103



Decision tree to predict whether a person will play tennis

Gini coefficient of the original dataset:

Gini(9/14, 5/14) = | - ( (9/14)% + (5/14)?)
= 0.459

Gini coeff. of partitions resulting from testing Weather:

Weather=Sunny

Ginisunny(2/5, 3/5) =1 - ( (2/5)2 + (3/5)2)
= 0.48
Weather=Overcast

GinioOvercast(4/4, 0/4) = | - ( (4/4)2 + (0/4)2 )
=0

Weather=Rainy

Ginirainy(3/5, 2/5) = | - ((3/5)* + (2/5)?)
=0.48

Average Gini coefficient of the resulting partitions

(5/14)x0.48 + (4/14)x0 + (5/14)x0.48 = 0.3428

Bruno Castro da Silva

Let’s consider testing VWeather

Original dataset: 9 instances “Yes"
5 instances "No"

yes yes yes yes yes yes yes yes yes
Nno NO NO NO NO

yes Overcast yes
yes 1 yes
no yes yes
no yes no
no yes no
|04



Decision tree to predict whether a person will play tennis

Gini coefficient of the original dataset:

Gini(9/14, 5/14) = | - ( (9/14)% + (5/14)?)
= 0.459

Gini coeff. of partitions resulting from testing Weather:

Weather=Sunny

Ginisunny(2/5, 3/5) =1 - ( (2/5)2 + (3/5)2)
= 0.48
Weather=Overcast

GinioOvercast(4/4, 0/4) = | - ( (4/4)2 + (0/4)2 )
=0

Weather=Rainy

Ginirainy(3/5, 2/5) = | - ((3/5)* + (2/5)?)
=0.48

Average Gini coefficient of the resulting partitions

(5/14)x0.48 + (4/14)x0 + (5/14)x0.48 = 0.3428

()OS0 Bruno Castro da Silva

Testing the attribute Weather:
Gini(Weather) = 0.3428

4

Now proceed similarly as
when selecting attributes via
Information Gain...

!

Compute Gini coefficient
of each candidate attribute

Split dataset using the attribute
with the lowest Gini coefficient

105



Formally:
Let p; be the probability that the label I occurs in instances in a dataset D

m
Gini(D) =1 — ( D (pl-)z) is the Gini coefficient of an arbitrary dataset D (m is the number of classes/labels)
i=1

Assume that the attribute A can take up v values

(that is, if we split D based on attribute A, we will end up with U partitions)

v p.
Let Giniy(D) = ); % Gini(D;) be the Gini coefficient associated with splitting D based on A
j=1

At each step, the algorithm splits the instances based on the attribute A with lowest Gini coefficient

Bruno Castro da Silva 106



Main criteria for selecting which attribute to test:
Information Gain - ID3 Algorithm
Information Gain Ratio - C4.5 Algorithm

Gini Impurity - CART Algorithm

Empirically:

Information Gain Ratio is almost always better than Information Gain

in terms of predictive power and complexity of the resulting decision trees

However, in practice
which criterion will work best depends heavily on the application

should test them all and compare the resulting performances

() ®EO)! Bruno Castro da Silva 107



Dealing with Numerical Attributes

So far we have studied how to select which categorical attribute to split

Sunny& HRainv
— Overcast

yes

yes
no
no
no

|

yes
yes
yes
yes

yes

yes

yes
no
no

===p-One branch per possible value of the attribute

How do we decide a splitting point/value in case of humerical attributes!’

(c)WSO) Bruno Castro da Silva

== Consider deciding how to split the attribute Age

Pick a threshold value, V

Generate two branches/disjoint partitions:

- one partition with instances s.t. Age <V
- one partition with instances s.t. Age >V

108



* How do we decide a splitting point/value in case of numerical attributes!’

Dealing with Numerical Attributes

- one partition with instances s.t. Age <V
- one partition with instances s.t. Age >V

1) Sort the instances according to the value of the attribute

()OS0 Bruno Castro da Silva

Name

Age

Gender

TrafficTicket

Class: High-Risk

Driver

John 43 M Yes High Risk
Peter 18 M No High Risk
Anna 35 F No Low Risk
Paula 19 F No High Risk
Mark 90 M Yes High Risk
Marisa 21 F Yes High Risk
Bob 30 M No Low Risk

109



* How do we decide a splitting point/value in case of numerical attributes!’

Dealing with Numerical Attributes

- one partition with instances s.t. Age <V
- one partition with instances s.t. Age >V

1) Sort the instances according to the value of the attribute

()OS0 Bruno Castro da Silva

Name

Gender

TrafficTicket

Class: High-Risk

Driver
Peter 18 M No High Risk
Paula 19 F No High Risk
Marisa 21 F Yes High Risk
Bob 30 M No Low Risk
Anna 35 F No Low Risk
John 43 M Yes High Risk
Mark 90 M Yes High Risk

10



* How do we decide a splitting point/value in case of numerical attributes!’

Dealing with Numerical Attributes

- one partition with instances s.t. Age <V
- one partition with instances s.t. Age >V

1) Sort the instances according to the value of the attribute

2) Evaluate splits done using as threshold the mean values between consecutive Ages

()OS0 Bruno Castro da Silva

Class: High-Risk

Name Age Gender TrafficTicket Driver
Peter 18 M No High Risk
Paula 19 F No High Risk
Marisa 21 F Yes High Risk
Bob 30 M No Low Risk
Anna 35 F No Low Risk
John 43 M Yes High Risk
Mark 90 M Yes High Risk




Dealing with Numerical Attributes

* How do we decide a splitting point/value in case of numerical attributes!’

- one partition with instances s.t. Age <V
- one partition with instances s.t. Age >V

1) Sort the instances according to the value of the attribute
2) Evaluate splits done using as threshold the mean values between consecutive Ages

Name Age

Peter 18 =
Paula 19 —
Marisa 21

Bob 30

Anna 35

John 43

Mark 90

()OS0 Bruno Castro da Silva 112



Dealing with Numerical Attributes

* How do we decide a splitting point/value in case of numerical attributes!’

- one partition with instances s.t. Age <V
- one partition with instances s.t. Age >V

1) Sort the instances according to the value of the attribute
2) Evaluate splits done using as threshold the mean values between consecutive Ages

Name Age
s Age<18.5

Peter
Paula 19 — Age<20
Marisa 21
Bob 30
Anna 35
John 43
Mark 90

()OS0 Bruno Castro da Silva 113



Dealing with Numerical Attributes

* How do we decide a splitting point/value in case of numerical attributes!’

- one partition with instances s.t. Age <V
- one partition with instances s.t. Age >V

1) Sort the instances according to the value of the attribute
2) Evaluate splits done using as threshold the mean values between consecutive Ages

Name Age
<

Peter 18 Gecs 90
Paula 19 Age<20

— Age<25.
Bob 30 sE=20
Anna 35
John 43
Mark 90

()OS0 Bruno Castro da Silva "



Dealing with Numerical Attributes

* How do we decide a splitting point/value in case of numerical attributes!’

- one partition with instances s.t. Age <V
- one partition with instances s.t. Age >V

1) Sort the instances according to the value of the attribute
2) Evaluate splits done using as threshold the mean values between consecutive Ages

Name Age
<
Peter 18 Gecs 90
Paula 19 Age<20
<
Bon 30 Age<25.5
Anna 35 —~ Age<32.5
John 43
Mark 90

()OS0 Bruno Castro da Silva 15



Dealing with Numerical Attributes

* How do we decide a splitting point/value in case of numerical attributes!’

- one partition with instances s.t. Age <V
- one partition with instances s.t. Age >V

1) Sort the instances according to the value of the attribute
2) Evaluate splits done using as threshold the mean values between consecutive Ages

Name Age
<
Peter 18 Gecs 90
Paula 19 Age<20
<
- 20 Age<25.5
Anna 35 — Age<32.5
—~ <
Mark 90 —

()OS0 Bruno Castro da Silva 16



Dealing with Numerical Attributes

* How do we decide a splitting point/value in case of numerical attributes!’

- one partition with instances s.t. Age <V
- one partition with instances s.t. Age >V

1) Sort the instances according to the value of the attribute
2) Evaluate splits done using as threshold the mean values between consecutive Ages

Name Age
<
Peter 18 Gecs 90
Paula 19 Age<20
<
o i~ Age<25.5
Anna 35 Age<32.5
|0 - =
<
Mark 90 Age=37
= Age<66.5

()OS0 Bruno Castro da Silva 117



Dealing with Numerical Attributes

* How do we decide a splitting point/value in case of numerical attributes!’

- one partition with instances s.t. Age <V
- one partition with instances s.t. Age >V

1) Sort the instances according to the value of the attribute
2) Evaluate splits done using as threshold the mean values between consecutive Ages

Age<18.5 Age<20 Age<<25.5 Age<32.5 Age<39 Age<<66.5

3) Pick the split threshold that maximizes the criterion of interest (Info. Gain, Gini, etc.)

* It has been shown that, for most commonly-used splitting criteria

* testing only thresholds that correspond to such mean values is sufficient

()OS0 Bruno Castro da Silva 118



Pros:
Simple for humans to understand and interpret
Handles both numerical and categorical attributes

Requires little data preparation (e.g., no need to normalize attributes)

Performs well with large datasets

“Automatically” ignores irrelevant attributes not useful to predict the class/label

Cons:
Non-robust: small variations in the dataset can generate completely different trees
Often generate overly-complicated trees that overfit to training data

i.e., that do not generalize well (make correct predictions) to new instances

Although it is possible to deal with numerical attributes, it is time-consuming

estimates suggest that processing them takes ~70% of execution time

Bruno Castro da Silva

1 19



