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Reinforcement Learning

•  Positive rewards 
       makes behavior more likely

•  Negative rewards 
       makes behavior less likely

•  Learn how to act

•  without a supervisor / training set
•  no previous knowledge about your environment
•  based only on rewards (and punishments)

http://cs.umass.edu/~bsilva
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
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Reinforcement Learning
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⇡ : S ! A
<latexit sha1_base64="5xcmhnJq48URXzU18FMFIMwxCKw=">AAAB/nicbVBNS8NAEJ34WetXVDx5WSyCp5KIoHiqevFY0X5AE8pmu2mXbrJhd6OUUPCvePGgiFd/hzf/jZs2B219MPB4b4aZeUHCmdKO820tLC4tr6yW1srrG5tb2/bOblOJVBLaIIIL2Q6wopzFtKGZ5rSdSIqjgNNWMLzO/dYDlYqJ+F6PEupHuB+zkBGsjdS1972EXaA75EnWH2gspXhEl+WuXXGqzgRonrgFqUCBetf+8nqCpBGNNeFYqY7rJNrPsNSMcDoue6miCSZD3KcdQ2McUeVnk/PH6MgoPRQKaSrWaKL+nshwpNQoCkxnhPVAzXq5+J/XSXV47mcsTlJNYzJdFKYcaYHyLFCPSUo0HxmCiWTmVkQGWGKiTWJ5CO7sy/OkeVJ1nap7e1qpXRVxlOAADuEYXDiDGtxAHRpAIINneIU368l6sd6tj2nrglXM7MEfWJ8/jIuUjw==</latexit><latexit sha1_base64="5xcmhnJq48URXzU18FMFIMwxCKw=">AAAB/nicbVBNS8NAEJ34WetXVDx5WSyCp5KIoHiqevFY0X5AE8pmu2mXbrJhd6OUUPCvePGgiFd/hzf/jZs2B219MPB4b4aZeUHCmdKO820tLC4tr6yW1srrG5tb2/bOblOJVBLaIIIL2Q6wopzFtKGZ5rSdSIqjgNNWMLzO/dYDlYqJ+F6PEupHuB+zkBGsjdS1972EXaA75EnWH2gspXhEl+WuXXGqzgRonrgFqUCBetf+8nqCpBGNNeFYqY7rJNrPsNSMcDoue6miCSZD3KcdQ2McUeVnk/PH6MgoPRQKaSrWaKL+nshwpNQoCkxnhPVAzXq5+J/XSXV47mcsTlJNYzJdFKYcaYHyLFCPSUo0HxmCiWTmVkQGWGKiTWJ5CO7sy/OkeVJ1nap7e1qpXRVxlOAADuEYXDiDGtxAHRpAIINneIU368l6sd6tj2nrglXM7MEfWJ8/jIuUjw==</latexit><latexit sha1_base64="5xcmhnJq48URXzU18FMFIMwxCKw=">AAAB/nicbVBNS8NAEJ34WetXVDx5WSyCp5KIoHiqevFY0X5AE8pmu2mXbrJhd6OUUPCvePGgiFd/hzf/jZs2B219MPB4b4aZeUHCmdKO820tLC4tr6yW1srrG5tb2/bOblOJVBLaIIIL2Q6wopzFtKGZ5rSdSIqjgNNWMLzO/dYDlYqJ+F6PEupHuB+zkBGsjdS1972EXaA75EnWH2gspXhEl+WuXXGqzgRonrgFqUCBetf+8nqCpBGNNeFYqY7rJNrPsNSMcDoue6miCSZD3KcdQ2McUeVnk/PH6MgoPRQKaSrWaKL+nshwpNQoCkxnhPVAzXq5+J/XSXV47mcsTlJNYzJdFKYcaYHyLFCPSUo0HxmCiWTmVkQGWGKiTWJ5CO7sy/OkeVJ1nap7e1qpXRVxlOAADuEYXDiDGtxAHRpAIINneIU368l6sd6tj2nrglXM7MEfWJ8/jIuUjw==</latexit><latexit sha1_base64="5xcmhnJq48URXzU18FMFIMwxCKw=">AAAB/nicbVBNS8NAEJ34WetXVDx5WSyCp5KIoHiqevFY0X5AE8pmu2mXbrJhd6OUUPCvePGgiFd/hzf/jZs2B219MPB4b4aZeUHCmdKO820tLC4tr6yW1srrG5tb2/bOblOJVBLaIIIL2Q6wopzFtKGZ5rSdSIqjgNNWMLzO/dYDlYqJ+F6PEupHuB+zkBGsjdS1972EXaA75EnWH2gspXhEl+WuXXGqzgRonrgFqUCBetf+8nqCpBGNNeFYqY7rJNrPsNSMcDoue6miCSZD3KcdQ2McUeVnk/PH6MgoPRQKaSrWaKL+nshwpNQoCkxnhPVAzXq5+J/XSXV47mcsTlJNYzJdFKYcaYHyLFCPSUo0HxmCiWTmVkQGWGKiTWJ5CO7sy/OkeVJ1nap7e1qpXRVxlOAADuEYXDiDGtxAHRpAIINneIU368l6sd6tj2nrglXM7MEfWJ8/jIuUjw==</latexit>

Behavior/Policy:  Decision rule 
Bruno Castro da Silva
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Robotics
State:        vector with information about the robot's current configuration
Action:      how to move each joint
Reward:   +1 if flip is successful; 0 if pancake falls off the pan

(Kormushev et al., IROS 2010)
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Robotics
State:        vector with information about the robot's current configuration
Action:      how to move each joint
Reward:   +1 if flip is successful; 0 if pancake falls off the pan

(Kormushev et al., IROS 2010)
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Digital Marketing
State:        vector with all information known about the user
Action:      which advertisement to show
Reward:   +1 if the user clicks, 0 otherwise

http://cs.umass.edu/~bsilva
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/


12Bruno Castro da Silva

Reinforcement Learning

Behavior/Policy:  Decision rule ⇡ : S ! A
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Digital Marketing
State:        vector with all information known about the user
Action:      which advertisement to show
Reward:   +1 if the user clicks, 0 otherwise
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Digital Marketing
State:        vector with all information known about the user
Action:      which advertisement to show
Reward:   +1 if the user clicks, 0 otherwise
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Reward:   +1 if the user clicks, 0 otherwise
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Reinforcement Learning
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Reinforcement Learning

→ Why not?  
→ Can’t we train it by telling it how to act in a few situations?

• Learning what to do → map situations to actions 

• Maximize the total amount of (possibly delayed) reward received 

• Agent is not told what actions to take

http://cs.umass.edu/~bsilva
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Reinforcement Learning

• Learning what to do → map situations to actions 

• Maximize the total amount of (possibly delayed) reward received 

• Agent is not told what actions to take

• Impractical to tell the agent how to act in each possible situation

• Discovers them by trial-and-error
State: current configuration of the robot joints, obstacles, orientation 

Actions: how to move each joint

(Hess et al., arXiv 2017)
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Markov Decision 
Processes
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687-Gridworld:  A Simple Environment
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687-Gridworld:  A Simple Environment

State: Position of robot (but not the direction it is facing)

Actions: Attempt Up        (AU) 
               Attempt Down    (AD) 
               Attempt Left       (AL) 
               Attempt Right      (AR)

Environment Dynamics: 
80% - moves in specified direction
5%   - gets confused, veers right of intended direction
5%   - gets confused, veers left of intended direction
10% - temporarily breaks and doesn’t move at all  

          If colliding with walls or obstacles, doesn’t move

- Agent starts in State 1  
- Process ends when agent reaches State 23

Rewards: 
 -10    - entering the state with water
+10    - entering the goal state (and process terminates)
    0    - entering any other state

            Reward discount parameter: γ = 0.9            Reward discount parameter: γ = 0.9
(will be discussed later)

- Number of states:  

                                23 “regular states" 
                                and also a special state,  

|𝒮 | = 23

s∞
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Markov Decision Processes

• Let      be the set of all possible states of the environment (“state set” or “state space”)𝒮

• Let      be the set of all possible actions the agent can take (“action set” or “action space”)𝒜

E.g., 𝒜 = {AU, AD, AL, AR}

E.g., 𝒮 = {State1,…, State23,s∞}
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Markov Decision Processes

• Let      be the transition functionp
Describes how the state of the environment changes

p(State9,AU, State4) = Pr(St+1 = State4 |St = State9,At = AU) = 0.8

p(State9,AU, State8) = Pr(St+1 = State8 |St = State9,At = AU) = 0.05

p(State9,AU, State10) = Pr(St+1 = State10 |St = State9,At = AU) = 0.05

p(State9,AU, State9) = Pr(St+1 = State9 |St = State9,At = AU) = 0.1

?

http://cs.umass.edu/~bsilva
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Markov Decision Processes
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Markov Decision Processes
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Markov Decision Processes

• Let      be the reward function: R

Rewards: 
 -10    - entering the state with water
+10    - entering the goal state (and process terminates)
    0    - entering any other state
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Markov Decision Processes

• Let      be the reward discount parameterγ

γ ∈ [0,1]

(will be discussed later)

http://cs.umass.edu/~bsilva
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/


34Bruno Castro da Silva

Markov Decision Processes

• So these are the elements of an MDP

Now, how to we encode the behavior  
that the agent could/should execute?

http://cs.umass.edu/~bsilva
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Policies
• Policy: decision rule - how agent selects actions 

           maps states to actions (determines behavior of agent)
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State1 AR

State2 AU

State3 AL

State4 AL

…

Current state Action to take

This is a deterministic policy
More generally, policies can be stochastic 
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State1 0 0.1 0.3 0.6

State2 0.8 0 0 0.2

State3 0.1 0.1 0.5 0.3

State4 0.25 0.25 0.25 0.25

…

Current state Probability of  
taking action AU

Probability of  
taking action AD

Probability of  
taking action AL

Probability of  
taking action AR

• Policy: decision rule - how agent selects actions 
           maps states to actions (determines behavior of agent)

• Let the function      be a policyπ

What is, e.g., π(State3,AD) = 0.1?
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State1 0 0.1 0.3 0.6

State2 0.8 0 0 0.2

State3 0.1 0.1 0.5 0.3

State4 0.25 0.25 0.25 0.25

…

Current state Probability of  
taking action AU

Probability of  
taking action AD

Probability of  
taking action AL

Probability of  
taking action AR

• Policy: decision rule - how agent selects actions 
           maps states to actions (determines behavior of agent)

• Let the function      be a policyπ

What is, e.g., π(State3,AD) = 0.1
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State1 0 0.1 0.3 0.6

State2 0.8 0 0 0.2

State3 0.1 0.1 0.5 0.3

State4 0.25 0.25 0.25 0.25

…

Current state Probability of  
taking action AU

Probability of  
taking action AD

Probability of  
taking action AL

Probability of  
taking action AR

• Policy: decision rule - how agent selects actions 
           maps states to actions (determines behavior of agent)

• Let the function      be a policyπ

Learning: corresponds to agent changing its policy
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Agent’s Goal

39Bruno Castro da Silva

“Conditioning" on  denotes that all  
actions are sampled according to  
 

     →  for all 

π
π

At ∼ π(St, ⋅ ) t ∈ ℕ≥0

 Objective function

   

 

J : Π → ℝ

J(π) := 𝔼[
∞

∑
t=0

Rt |π]
(will be revised later)

•  Find a policy, , called an optimal policy

•  Intuitively, an agent that follows   
 maximizes the expected total amount of reward  
 that it will obtain

π*

π*

Source: https://machinelearningknowledge.ai/beginners-guide-to-what-is-policy-in-reinforcement-learning/
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// Samples action from policy

// Samples initial state

// May update  based on experienceπ

// Alerts agent that episode ended

// Exits out of loop if episode ended

;                    r = R(s, a)

Agent-Environment Interaction
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• Let      be the reward discount parameter

γ ∈ [0,1]

"Will be discussed later now"

γ
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   The Marshmallow Test 

  “Here's a marshmallow.  
   You can either wait, and I’ll give you another one, so you’ll have two, 

  or you can eat it now"

Igniter Media, 2009 - https://www.youtube.com/watch?v=QX_oy9614HQ
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   The Marshmallow Test 

  “Here's a marshmallow.  
   You can either wait, and I’ll give you another one, so you’ll have two, 

  or you can eat it now"

•  Many people pick one marshmallow now when presented with these options

•  Suggests that rewards obtained in the distant future are worth less to us  

 than rewards in the near future 

•  Reward discount parameter, 

•  encodes, in the objective function, discounting of rewards  

 based on how distant in the future they may occur

γ

but before I show you the updated 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          Intuitively, what is a “good" action to take when in state  ?

1) possibly good “immediate” reward (in the current state)

2) but also that takes agent to future states from which 
    it can collect lots of rewards 

St

•  Recall that an agent that follows an optimal policy, , 
 maximizes the expected total amount of reward 

π*
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          Intuitively, what is a “good" action to take when in state  ?

1) possibly good “immediate” reward (in the current state)

2) but also that takes agent to future states from which 
    it can collect lots of rewards 

St

which action to take in  
to obtain the largest  

sum of rewards?

s020

-3

7

a1

a2

-10 0.1 0.3

-10 0.1 +100

a a a

aaa
s0

•  Recall that an agent that follows an optimal policy, , 
 maximizes the expected total amount of reward 

π*
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20

-3

7

a1

a2

-10 0.1 0.3

-10 0.1 +100

a a a

aaa
s0

a1 : 20 + (�10) + 0.1 + 0.3

a2 : �3 + (�10) + 0.1 + 100
Are rewards a few steps ahead 
worth the same to us? = 7 +J(π) {

= 7 + (-3) + (-10) + 0.1 + 100 = 94.1

Should policy  take action  or , when in state  ?π a1 a2 s0
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20

-3

7

a1

a2

-10 0.1 0.3

-10 0.1 +100

a a a

aaa
s0

a1 : 20 + (�10) + 0.1 + 0.3

a2 : �3 + (�10) + 0.1 + 100
Are rewards a few steps ahead 
worth the same to us? = 7 +J(π) {

= 7 + (-3) + (-10) + 0.1 + 100 = 94.1

Should policy  take action  or , when in state  ?π a1 a2 s0

Agent could: 
   - execute , get a good immediate reward (20) but then keep getting low rewards 
   - execute , get low rewards for a while, but then get a really large reward (100)

a1
a2
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20

-3

7

a1

a2

-10 0.1 0.3

-10 0.1 +100

a a a

aaa
s0

a1 : 20 + �(�10) + �20.1 + �30.3

a2 : �3 + �(�10) + �20.1 + �3100

a1 : 20 + (�10) + 0.1 + 0.3

a2 : �3 + (�10) + 0.1 + 100
Are rewards a few steps ahead 
worth the same to us? = 7 +J(π) {

= 7 + (-3) + (-10) + 0.1 + 100 = 94.1

Should policy  take action  or , when in state  ?π a1 a2 s0

a1 : 20 + �(�10) + �20.1 + �30.3= 0?
a1 : 20 + �(�10) + �20.1 + �30.3= 1?
a1 : 20 + �(�10) + �20.1 + �30.3= [0,1)?
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1. Agent is in , picks action . 
2. Receives reward  and observes next state 
3. Updates  → 

s a
r s′￼

Qk Qk+1

Q-Learning
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Qk+1(s, a) � (1 � �)Qk(s, a) + �

�
r + � max

a�
Qk(s�, a�)

�

new estimate
of how much reward

it can get

1. Agent is in , picks action . 
2. Receives reward  and observes next state 
3. Updates  → 

s a
r s′￼

Qk Qk+1

Q-Learning

current estimate of how much 
return it can get  

if executing action  in state a s
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Qk+1(s, a) � (1 � �)Qk(s, a) + �

�
r + � max

a�
Qk(s�, a�)

�

1. Agent is in , picks action . 
2. Receives reward  and observes next state 
3. Updates  → 

s a
r s′￼

Qk Qk+1

Q-Learning

current estimate of how much 
return it can get  

if executing action  in state a s

new estimate of how much 
return it can get  

if executing action  in state a s
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Qk+1(s, a) � (1 � �)Qk(s, a) + �

�
r + � max

a�
Qk(s�, a�)

�

1. Agent is in , picks action . 
2. Receives reward  and observes next state 
3. Updates  → 

s a
r s′￼

Qk Qk+1

Q-Learning
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Qk+1(s, a) � (1 � �)Qk(s, a) + �

�
r + � max

a�
Qk(s�, a�)

�

Q-Learning algorithm

reward -0.04 after every action 
except when entering the rightmost states

Q-Learning

1. Agent is in , picks action . 
2. Receives reward  and observes next state 
3. Updates  → 

s a
r s′￼

Qk Qk+1
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Qk+1(s, a) � (1 � �)Qk(s, a) + �

�
r + � max

a�
Qk(s�, a�)

�

     ↑
←    → 
     ↓

     ↑
←    → 
     ↓

     ↑
←    → 
     ↓

     ↑
←    → 
     ↓

     ↑
←    → 
     ↓

     ↑
←    → 
     ↓

     ↑
←    → 
     ↓

     ↑
←    → 
     ↓

     ↑
←    → 
     ↓

• Stores for each state the preference of the agent  
for taking each one of the actions: Q(s,a)

• E.g., in state (2,1), we’d have

• Q((2,1), ↑)    = preference for action UP when in state (2,1)
• Q((2,1), ←)   = preference for action LEFT when in state (2,1)
• Q((2,1), →)   = preference for action RIGHT when in state (2,1)
• Q((2,1), ↓)    = preference for action DOWN when in state (2,1)

Q-Learning

Q-Learning algorithm

1. Agent is in , picks action . 
2. Receives reward  and observes next state 
3. Updates  → 

s a
r s′￼

Qk Qk+1
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Q-Learning

Qk+1(s, a) � (1 � �)Qk(s, a) + �

�
r + � max

a�
Qk(s�, a�)

�

• Initialize the Q table

• Q(s,a) ← some number (zero or random), ∀ s,a
         ↑
←        → 

         ↓

         ↑
←        → 

         ↓

         ↑
←        → 

         ↓
         ↑
←        → 

         ↓

         ↑
←        → 

         ↓

         ↑
←        → 

         ↓
         ↑
←        → 

         ↓

         ↑
←        → 

         ↓

         ↑
←        → 

         ↓

         ↑
←        → 

         ↓

Q-Learning algorithm

1. Agent is in , picks action . 
2. Receives reward  and observes next state 
3. Updates  → 

s a
r s′￼

Qk Qk+1

Bruno Castro da Silva
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Q-Learning

Qk+1(s, a) � (1 � �)Qk(s, a) + �

�
r + � max

a�
Qk(s�, a�)

�

      ↑0.5

←1.7  0.9→ 

      ↓1.6

      ↑0.3

←.3  0.6→ 

      ↓0.1

      ↑0.52

←1.1  0.1→ 

      ↓0.93

      ↑0.1

←0.8  0.3→ 

      ↓0.32

      ↑0.25

←1.0  0.1→ 

      ↓-0.66

      ↑1.5

←2.3  0.3→ 

      ↓0.0

      ↑0.21

←1.2  0.0→ 

      ↓1.4

      ↑0.1

←1.0  0.2→ 

      ↓1.9

      ↑2.1

←4.2  3.2→
      ↓0.21

Q-Learning algorithm

• Initialize the Q table

• Q(s,a) ← some number (zero or random), ∀ s,a

1. Agent is in , picks action . 
2. Receives reward  and observes next state 
3. Updates  → 

s a
r s′￼

Qk Qk+1

Bruno Castro da Silva
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Q-Learning

Qk+1(s, a) � (1 � �)Qk(s, a) + �

�
r + � max

a�
Qk(s�, a�)

�

      ↑0.5

←1.7  0.9→ 

      ↓1.6

      ↑0.3

←.3  0.6→ 

      ↓0.1

      ↑2.1

←4.2  3.2→ 

      ↓0.21

      ↑0.52

←1.1  0.1→ 

      ↓0.93

      ↑0.1

←0.8  0.3→ 

      ↓0.32

      ↑0.25

←1.0  0.1→ 

      ↓-0.66

      ↑1.5

←2.3  0.3→ 

      ↓0.0

      ↑0.21

←1.2  0.0→ 

      ↓1.4

      ↑0.1

←1.0  0.2→ 

      ↓1.9

Q-Learning algorithm

• Assume the agent was in state (3,3)

1. Agent is in , picks action . 
2. Receives reward  and observes next state 
3. Updates  → 

s a
r s′￼

Qk Qk+1

Bruno Castro da Silva
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�(s) = arg max
a

Q(s, a)

�(s) = arg max
a

Q(s, a)←

      ↑0.5

←1.7  0.9→ 

      ↓1.6

      ↑0.3

←.3  0.6→ 

      ↓0.1

      ↑2.1

←4.2  3.2→ 

      ↓0.21

      ↑0.52

←1.1  0.1→ 

      ↓0.93

      ↑0.1

←0.8  0.3→ 

      ↓0.32

      ↑0.25

←1.0  0.1→ 

      ↓-0.66

      ↑1.5

←2.3  0.3→ 

      ↓0.0

      ↑0.21

←1.2  0.0→ 

      ↓1.4

      ↑0.1

←1.0  0.2→ 

      ↓1.9

Q-Learning

Qk+1(s, a) � (1 � �)Qk(s, a) + �

�
r + � max

a�
Qk(s�, a�)

�

Q-Learning algorithm

• Assume the agent was in state (3,3)

• Q((3,3), ↑)=2.1
• Q((3,3), ←)=4.2
• Q((3,3), →)=3.2
• Q((3,3), ↓)=0.21

1. Agent is in , picks action . 
2. Receives reward  and observes next state 
3. Updates  → 

s a
r s′￼

Qk Qk+1

Bruno Castro da Silva
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• Assume the agent was in state (3,3)
• Executed action ←

• s = (3,3)
• a = ←

      ↑0.5

←1.7  0.9→ 

      ↓1.6

      ↑0.3

←.3  0.6→ 

      ↓0.1

      ↑2.1

←4.2  3.2→ 

      ↓0.21

      ↑0.52

←1.1  0.1→ 

      ↓0.93

      ↑0.1

←0.8  0.3→ 

      ↓0.32

      ↑0.25

←1.0  0.1→ 

      ↓-0.66

      ↑1.5

←2.3  0.3→ 

      ↓0.0

      ↑0.21

←1.2  0.0→ 

      ↓1.4

      ↑0.1

←1.0  0.2→ 

      ↓1.9

Q-Learning

Qk+1(s, a) � (1 � �)Qk(s, a) + �

�
r + � max

a�
Qk(s�, a�)

�

Q-Learning algorithm

1. Agent is in , picks action . 
2. Receives reward  and observes next state 
3. Updates  → 

s a
r s′￼

Qk Qk+1

Bruno Castro da Silva
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• Assume the agent was in state (3,3)
• Executed action ←

• s = (3,3)
• a = ←
• r  = ?
• s’ = ?

      ↑0.5

←1.7  0.9→ 

      ↓1.6

      ↑0.3

←.3  0.6→ 

      ↓0.1

      ↑2.1

←4.2  3.2→ 

      ↓0.21

      ↑0.52

←1.1  0.1→ 

      ↓0.93

      ↑0.1

←0.8  0.3→ 

      ↓0.32

      ↑0.25

←1.0  0.1→ 

      ↓-0.66

      ↑1.5

←2.3  0.3→ 

      ↓0.0

      ↑0.21

←1.2  0.0→ 

      ↓1.4

      ↑0.1

←1.0  0.2→ 

      ↓1.9

Q-Learning

Qk+1(s, a) � (1 � �)Qk(s, a) + �

�
r + � max

a�
Qk(s�, a�)

�

Q-Learning algorithm

1. Agent is in , picks action . 
2. Receives reward  and observes next state 
3. Updates  → 

s a
r s′￼

Qk Qk+1
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• Assume the agent was in state (3,3)
• Executed action ←

• s = (3,3)
• a = ←
• r  = -0.04
• s’ =(3,2)

      ↑0.5

←1.7  0.9→ 

      ↓1.6

      ↑0.3

←.3  0.6→ 

      ↓0.1

      ↑2.1

←4.2  3.2→ 

      ↓0.21

      ↑0.52

←1.1  0.1→ 

      ↓0.93

      ↑0.1

←0.8  0.3→ 

      ↓0.32

      ↑0.25

←1.0  0.1→ 

      ↓-0.66

      ↑1.5

←2.3  0.3→ 

      ↓0.0

      ↑0.21

←1.2  0.0→ 

      ↓1.4

      ↑0.1

←1.0  0.2→ 

      ↓1.9

Q-Learning

Qk+1(s, a) � (1 � �)Qk(s, a) + �

�
r + � max

a�
Qk(s�, a�)

�

Q-Learning algorithm

1. Agent is in , picks action . 
2. Receives reward  and observes next state 
3. Updates  → 

s a
r s′￼

Qk Qk+1
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• Assume the agent was in state (3,3)
• Executed action ←

• s = (3,3)
• a = ←
• r  = -0.04
• s’ =(3,2)

      ↑0.5

←1.7  0.9→ 

      ↓1.6

      ↑0.3

←.3  0.6→ 

      ↓0.1

      ↑2.1

←4.2  3.2→ 

      ↓0.21

      ↑0.52

←1.1  0.1→ 

      ↓0.93

      ↑0.1

←0.8  0.3→ 

      ↓0.32

      ↑0.25

←1.0  0.1→ 

      ↓-0.66

      ↑1.5

←2.3  0.3→ 

      ↓0.0

      ↑0.21

←1.2  0.0→ 

      ↓1.4

      ↑0.1

←1.0  0.2→ 

      ↓1.9

Q-Learning

Qk+1(s, a) � (1 � �)Qk(s, a) + �

�
r + � max

a�
Qk(s�, a�)

�

Q-Learning algorithm

Expected to get 4.2 total reward by executing LEFT

1. Agent is in , picks action . 
2. Receives reward  and observes next state 
3. Updates  → 

s a
r s′￼

Qk Qk+1
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• Assume the agent was in state (3,3)
• Executed action ←

• s = (3,3)
• a = ←
• r  = -0.04
• s’ =(3,2)

      ↑0.5

←1.7  0.9→ 

      ↓1.6

      ↑0.3

←.3  0.6→ 

      ↓0.1

      ↑2.1

←4.2  3.2→ 

      ↓0.21

      ↑0.52

←1.1  0.1→ 

      ↓0.93

      ↑0.1

←0.8  0.3→ 

      ↓0.32

      ↑0.25

←1.0  0.1→ 

      ↓-0.66

      ↑1.5

←2.3  0.3→ 

      ↓0.0

      ↑0.21

←1.2  0.0→ 

      ↓1.4

      ↑0.1

←1.0  0.2→ 

      ↓1.9

Q-Learning

Qk+1(s, a) � (1 � �)Qk(s, a) + �

�
r + � max

a�
Qk(s�, a�)

�

Q-Learning algorithm

Expected to get 4.2 total reward by executing LEFT

But in reality…
it received a first reward of -0.04
and went to a state from which it thinks it can get 0.6

Based on this last experience, it now thinks it can get 
      -0.04 + 0.6 = 0.56   (way less than 4.2!)

1. Agent is in , picks action . 
2. Receives reward  and observes next state 
3. Updates  → 

s a
r s′￼

Qk Qk+1

Bruno Castro da Silva
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      ↑0.5

←1.7  0.9→ 

      ↓1.6

      ↑0.3

←.3  0.6→ 

      ↓0.1

      ↑2.1

←4.2  3.2→ 

      ↓0.21

      ↑0.52

←1.1  0.1→ 

      ↓0.93

      ↑0.1

←0.8  0.3→ 

      ↓0.32

      ↑0.25

←1.0  0.1→ 

      ↓-0.66

      ↑1.5

←2.3  0.3→ 

      ↓0.0

      ↑0.21

←1.2  0.0→ 

      ↓1.4

      ↑0.1

←1.0  0.2→ 

      ↓1.9

Q-Learning

Qk+1(s, a) � (1 � �)Qk(s, a) + �

�
r + � max

a�
Qk(s�, a�)

�

Q-Learning algorithm

• Assume the agent was in state (3,3)
• Executed action ←

• s = (3,3)
• a = ←
• r  = -0.04
• s’ =(3,2)

1. Agent is in , picks action . 
2. Receives reward  and observes next state 
3. Updates  → 

s a
r s′￼

Qk Qk+1
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Qk+1(s, a) � (1 � �)Qk(s, a) + �

�
r + � max

a�
Qk(s�, a�)

�

      ↑0.5

←1.7  0.9→ 

      ↓1.6

      ↑0.3

←.3  0.6→ 

      ↓0.1

      ↑2.1

←4.2  3.2→ 

      ↓0.21

      ↑0.52

←1.1  0.1→ 

      ↓0.93

      ↑0.1

←0.8  0.3→ 

      ↓0.32

      ↑0.25

←1.0  0.1→ 

      ↓-0.66

      ↑1.5

←2.3  0.3→ 

      ↓0.0

      ↑0.21

←1.2  0.0→ 

      ↓1.4

      ↑0.1

←1.0  0.2→ 

      ↓1.9

Q-Learning

Qk+1(s, a) � (1 � �)Qk(s, a) + �

�
r + � max

a�
Qk(s�, a�)

�

Q-Learning algorithm

• Assume the agent was in state (3,3)
• Executed action ←

• s = (3,3)
• a = ←
• r  = -0.04
• s’ =(3,2)

1. Agent is in , picks action . 
2. Receives reward  and observes next state 
3. Updates  → 

s a
r s′￼

Qk Qk+1

Bruno Castro da Silva
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Qk+1(s, a) � (1 � �)Qk(s, a) + �

�
r + � max

a�
Qk(s�, a�)

�

      ↑0.5

←1.7  0.9→ 

      ↓1.6

      ↑0.3

←.3  0.6→ 

      ↓0.1

      ↑2.1

←4.2  3.2→ 

      ↓0.21

      ↑0.52

←1.1  0.1→ 

      ↓0.93

      ↑0.1

←0.8  0.3→ 

      ↓0.32

      ↑0.25

←1.0  0.1→ 

      ↓-0.66

      ↑1.5

←2.3  0.3→ 

      ↓0.0

      ↑0.21

←1.2  0.0→ 

      ↓1.4

      ↑0.1

←1.0  0.2→ 

      ↓1.9

Q-Learning

Qk+1(s, a) � (1 � �)Qk(s, a) + �

�
r + � max

a�
Qk(s�, a�)

�

Q-Learning algorithm

• Assume the agent was in state (3,3)
• Executed action ←

• s = (3,3)
• a = ←
• r  = -0.04
• s’ =(3,2)

      -0.04

1. Agent is in , picks action . 
2. Receives reward  and observes next state 
3. Updates  → 

s a
r s′￼

Qk Qk+1

Bruno Castro da Silva
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Qk+1(s, a) � (1 � �)Qk(s, a) + �

�
r + � max

a�
Qk(s�, a�)

�

      ↑0.5

←1.7  0.9→ 

      ↓1.6

      ↑0.3

←.3  0.6→ 

      ↓0.1

      ↑2.1

←4.2  3.2→ 

      ↓0.21

      ↑0.52

←1.1  0.1→ 

      ↓0.93

      ↑0.1

←0.8  0.3→ 

      ↓0.32

      ↑0.25

←1.0  0.1→ 

      ↓-0.66

      ↑1.5

←2.3  0.3→ 

      ↓0.0

      ↑0.21

←1.2  0.0→ 

      ↓1.4

      ↑0.1

←1.0  0.2→ 

      ↓1.9

Q-Learning

Qk+1(s, a) � (1 � �)Qk(s, a) + �

�
r + � max

a�
Qk(s�, a�)

�

Q-Learning algorithm

• Assume the agent was in state (3,3)
• Executed action ←

• s = (3,3)
• a = ←
• r  = -0.04
• s’ =(3,2)

      -0.04 0.6

1. Agent is in , picks action . 
2. Receives reward  and observes next state 
3. Updates  → 

s a
r s′￼

Qk Qk+1
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Qk+1(s, a) � (1 � �)Qk(s, a) + �

�
r + � max

a�
Qk(s�, a�)

�

      ↑0.5

←1.7  0.9→ 

      ↓1.6

      ↑0.3

←.3  0.6→ 

      ↓0.1

      ↑2.1

←4.2  3.2→ 

      ↓0.21

      ↑0.52

←1.1  0.1→ 

      ↓0.93

      ↑0.1

←0.8  0.3→ 

      ↓0.32

      ↑0.25

←1.0  0.1→ 

      ↓-0.66

      ↑1.5

←2.3  0.3→ 

      ↓0.0

      ↑0.21

←1.2  0.0→ 

      ↓1.4

      ↑0.1

←1.0  0.2→ 

      ↓1.9

Q-Learning

Qk+1(s, a) � (1 � �)Qk(s, a) + �

�
r + � max

a�
Qk(s�, a�)

�

Q-Learning algorithm

• Assume the agent was in state (3,3)
• Executed action ←

• s = (3,3)
• a = ←
• r  = -0.04
• s’ =(3,2)

      -0.04 0.6Should be updated towards  
-0.04 + 0.6 = 0.56

1. Agent is in , picks action . 
2. Receives reward  and observes next state 
3. Updates  → 

s a
r s′￼

Qk Qk+1
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Qk+1(s, a) � (1 � �)Qk(s, a) + �

�
r + � max

a�
Qk(s�, a�)

�

      ↑0.5

←1.7  0.9→ 

      ↓1.6

      ↑0.3

←.3  0.6→ 

      ↓0.1

      ↑2.1

←4.2  3.2→ 

      ↓0.21

      ↑0.52

←1.1  0.1→ 

      ↓0.93

      ↑0.1

←0.8  0.3→ 

      ↓0.32

      ↑0.25

←1.0  0.1→ 

      ↓-0.66

      ↑1.5

←2.3  0.3→ 

      ↓0.0

      ↑0.21

←1.2  0.0→ 

      ↓1.4

      ↑0.1

←1.0  0.2→ 

      ↓1.9

Q-Learning

Qk+1(s, a) � (1 � �)Qk(s, a) + �

�
r + � max

a�
Qk(s�, a�)

�

Q-Learning algorithm

• Assume the agent was in state (3,3)
• Executed action ←

• s = (3,3)
• a = ←
• r  = -0.04
• s’ =(3,2)

1. Agent is in , picks action . 
2. Receives reward  and observes next state 
3. Updates  → 

s a
r s′￼

Qk Qk+1

Bruno Castro da Silva
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Qk+1(s, a) � (1 � �)Qk(s, a) + �

�
r + � max

a�
Qk(s�, a�)

�

assume
     α = 0.5
     γ  = 1.0

      ↑0.5

←1.7  0.9→ 

      ↓1.6

      ↑0.3

←.3  0.6→ 

      ↓0.1

      ↑2.1

←4.2  3.2→ 

      ↓0.21

      ↑0.52

←1.1  0.1→ 

      ↓0.93

      ↑0.1

←0.8  0.3→ 

      ↓0.32

      ↑0.25

←1.0  0.1→ 

      ↓-0.66

      ↑1.5

←2.3  0.3→ 

      ↓0.0

      ↑0.21

←1.2  0.0→ 

      ↓1.4

      ↑0.1

←1.0  0.2→ 

      ↓1.9

Q-Learning

Qk+1(s, a) � (1 � �)Qk(s, a) + �

�
r + � max

a�
Qk(s�, a�)

�

Q-Learning algorithm

• Assume the agent was in state (3,3)
• Executed action ←

• s = (3,3)
• a = ←
• r  = -0.04
• s’ =(3,2)

1. Agent is in , picks action . 
2. Receives reward  and observes next state 
3. Updates  → 

s a
r s′￼

Qk Qk+1

Bruno Castro da Silva
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      ↑0.5

←1.7  0.9→ 

      ↓1.6

      ↑0.3

←.3  0.6→ 

      ↓0.1

      ↑2.1

←4.2  3.2→ 

      ↓0.21

      ↑0.52

←1.1  0.1→ 

      ↓0.93

      ↑0.1

←0.8  0.3→ 

      ↓0.32

      ↑0.25

←1.0  0.1→ 

      ↓-0.66

      ↑1.5

←2.3  0.3→ 

      ↓0.0

      ↑0.21

←1.2  0.0→ 

      ↓1.4

      ↑0.1

←1.0  0.2→ 

      ↓1.9

Q((3,3),←)  ← (1-α)Q((3,3),←) + α(-0.04 + γ max Q((3,2),a'))
                   ← (1-α) 4.2 + α(-0.04 + γ * 0.6)
                   ← 0.5 * 4.2 + 0.5(-0.04 + 1.0 * 0.6) = 2.38

Q-Learning

Qk+1(s, a) � (1 � �)Qk(s, a) + �

�
r + � max

a�
Qk(s�, a�)

�

Q-Learning algorithm

assume
     α = 0.5
     γ  = 1.0

• Assume the agent was in state (3,3)
• Executed action ←

• s = (3,3)
• a = ←
• r  = -0.04
• s’ =(3,2)

1. Agent is in , picks action . 
2. Receives reward  and observes next state 
3. Updates  → 

s a
r s′￼

Qk Qk+1

Bruno Castro da Silva
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      ↑0.5

←1.7  0.9→ 

      ↓1.6

      ↑0.3

←.3  0.6→ 

      ↓0.1

      ↑2.1

←4.2  3.2→ 

      ↓0.21

      ↑0.52

←1.1  0.1→ 

      ↓0.93

      ↑0.1

←0.8  0.3→ 

      ↓0.32

      ↑0.25

←1.0  0.1→ 

      ↓-0.66

      ↑1.5

←2.3  0.3→ 

      ↓0.0

      ↑0.21

←1.2  0.0→ 

      ↓1.4

      ↑0.1

←1.0  0.2→ 

      ↓1.9

Q((3,3),←)  ← (1-α)Q((3,3),←) + α(-0.04 + γ max Q((3,2),a'))
                   ← (1-α) 4.2 + α(-0.04 + γ * 0.6)
                   ← 0.5 * 4.2 + 0.5(-0.04 + 1.0 * 0.6) = 2.38

Q-Learning

Qk+1(s, a) � (1 � �)Qk(s, a) + �

�
r + � max

a�
Qk(s�, a�)

�

Q-Learning algorithm

assume
     α = 0.5
     γ  = 1.0

• Assume the agent was in state (3,3)
• Executed action ←

• s = (3,3)
• a = ←
• r  = -0.04
• s’ =(3,2)

1. Agent is in , picks action . 
2. Receives reward  and observes next state 
3. Updates  → 

s a
r s′￼

Qk Qk+1

Bruno Castro da Silva
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      ↑0.5

←1.7  0.9→ 

      ↓1.6

      ↑0.3

←.3  0.6→ 

      ↓0.1

      ↑2.1

←2.38 3.2→ 

      ↓0.21

      ↑0.52

←1.1  0.1→ 

      ↓0.93

      ↑0.1

←0.8  0.3→ 

      ↓0.32

      ↑0.25

←1.0  0.1→ 

      ↓-0.66

      ↑1.5

←2.3  0.3→ 

      ↓0.0

      ↑0.21

←1.2  0.0→ 

      ↓1.4

      ↑0.1

←1.0  0.2→ 

      ↓1.9

Q((3,3),←)  ← (1-α)Q((3,3),←) + α(-0.04 + γ max Q((3,2),a'))
                   ← (1-α) 4.2 + α(-0.04 + γ * 0.6)
                   ← 0.5 * 4.2 + 0.5(-0.04 + 1.0 * 0.6) = 2.38

Q-Learning

Qk+1(s, a) � (1 � �)Qk(s, a) + �

�
r + � max

a�
Qk(s�, a�)

�

Q-Learning algorithm

assume
     α = 0.5
     γ  = 1.0

• Assume the agent was in state (3,3)
• Executed action ←

• s = (3,3)
• a = ←
• r  = -0.04
• s’ =(3,2)

1. Agent is in , picks action . 
2. Receives reward  and observes next state 
3. Updates  → 

s a
r s′￼

Qk Qk+1

Bruno Castro da Silva
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      ↑0.5

←1.7  0.9→ 

      ↓1.6

      ↑0.52

←1.1  0.1→ 

      ↓0.93

      ↑0.1

←0.8  0.3→ 

      ↓0.32

      ↑0.25

←1.0  0.1→ 

      ↓-0.66

      ↑1.5

←2.3  0.3→ 

      ↓0.0

      ↑0.21

←1.2  0.0→ 

      ↓1.4

      ↑0.1

←1.0  0.2→ 

      ↓1.9

      ↑0.3

←.3  0.6→ 

      ↓0.1

      ↑2.1

←2.38 3.2→ 

      ↓0.21

• Agent is now in state (2,3)

Q-Learning

Qk+1(s, a) � (1 � �)Qk(s, a) + �

�
r + � max

a�
Qk(s�, a�)

�

Q-Learning algorithm

1. Agent is in , picks action . 
2. Receives reward  and observes next state 
3. Updates  → 

s a
r s′￼

Qk Qk+1

Bruno Castro da Silva
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      ↑0.5

←1.7  0.9→ 

      ↓1.6

      ↑0.52

←1.1  0.1→ 

      ↓0.93

      ↑0.1

←0.8  0.3→ 

      ↓0.32

      ↑0.25

←1.0  0.1→ 

      ↓-0.66

      ↑1.5

←2.3  0.3→ 

      ↓0.0

      ↑0.21

←1.2  0.0→ 

      ↓1.4

      ↑0.1

←1.0  0.2→ 

      ↓1.9

      ↑0.3

←.3  0.6→ 

      ↓0.1

      ↑2.1

←2.38 3.2→ 

      ↓0.21

• Agent is now in state (2,3)

Q-Learning

Qk+1(s, a) � (1 � �)Qk(s, a) + �

�
r + � max

a�
Qk(s�, a�)

�

Q-Learning algorithm

(…) 
process repeats

1. Agent is in , picks action . 
2. Receives reward  and observes next state 
3. Updates  → 

s a
r s′￼

Qk Qk+1

Bruno Castro da Silva
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• Problem: when agent was in state (3,3)
• Executou ação ←

• s = (3,3)
• a = ←

      ↑0.5

←1.7  0.9→ 

      ↓1.6

      ↑0.3

←.3  0.6→ 

      ↓0.1

      ↑2.1

←4.2  3.2→ 

      ↓0.21

      ↑0.52

←1.1  0.1→ 

      ↓0.93

      ↑0.1

←0.8  0.3→ 

      ↓0.32

      ↑0.25

←1.0  0.1→ 

      ↓-0.66

      ↑1.5

←2.3  0.3→ 

      ↓0.0

      ↑0.21

←1.2  0.0→ 

      ↓1.4

      ↑0.1

←1.0  0.2→ 

      ↓1.9

• Escolheu a ação que parecia melhor (maior valor Q)

• Mas durante o aprendizado, Q's podem estar errados!

• Agente ainda não sabe quais ações são melhores

• Deve sempre executar a ação que parece a melhor?

Q-Learning

Qk+1(s, a) � (1 � �)Qk(s, a) + �

�
r + � max

a�
Qk(s�, a�)

�

Q-Learning algorithm

1. Agent is in , picks action . 
2. Receives reward  and observes next state 
3. Updates  → 

s a
r s′￼

Qk Qk+1

Bruno Castro da Silva
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• Executed action ←
• s = (3,3)
• a = ←

      ↑0.5

←1.7  0.9→ 

      ↓1.6

      ↑0.3

←.3  0.6→ 

      ↓0.1

      ↑2.1

←4.2  3.2→ 

      ↓0.21

      ↑0.52

←1.1  0.1→ 

      ↓0.93

      ↑0.1

←0.8  0.3→ 

      ↓0.32

      ↑0.25

←1.0  0.1→ 

      ↓-0.66

      ↑1.5

←2.3  0.3→ 

      ↓0.0

      ↑0.21

←1.2  0.0→ 

      ↓1.4

      ↑0.1

←1.0  0.2→ 

      ↓1.9

• Escolheu a ação que parecia melhor (maior valor Q)

• Mas durante o aprendizado, Q's podem estar errados!

• Agente ainda não sabe quais ações são melhores

• Deve sempre executar a ação que parece a melhor?

Q-Learning

Qk+1(s, a) � (1 � �)Qk(s, a) + �

�
r + � max

a�
Qk(s�, a�)

�

Q-Learning algorithm

• Problem: when agent was in state (3,3)

1. Agent is in , picks action . 
2. Receives reward  and observes next state 
3. Updates  → 

s a
r s′￼

Qk Qk+1

Bruno Castro da Silva
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      ↑0.5

←1.7  0.9→ 

      ↓1.6

      ↑0.3

←.3  0.6→ 

      ↓0.1

      ↑2.1

←4.2  3.2→ 

      ↓0.21

      ↑0.52

←1.1  0.1→ 

      ↓0.93

      ↑0.1

←0.8  0.3→ 

      ↓0.32

      ↑0.25

←1.0  0.1→ 

      ↓-0.66

      ↑1.5

←2.3  0.3→ 

      ↓0.0

      ↑0.21

←1.2  0.0→ 

      ↓1.4

      ↑0.1

←1.0  0.2→ 

      ↓1.9 • Should it always execute the one that seems the best?

Q-Learning

Qk+1(s, a) � (1 � �)Qk(s, a) + �

�
r + � max

a�
Qk(s�, a�)

�

Q-Learning algorithm

• Agent doesn’t know yet which actions are best

• But during learning, Q's might be wrong!

• Selected action that seemed the best (highest Q)

• Executed action ←
• s = (3,3)
• a = ←

• Problem: when agent was in state (3,3)

1. Agent is in , picks action . 
2. Receives reward  and observes next state 
3. Updates  → 

s a
r s′￼

Qk Qk+1

Bruno Castro da Silva
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�(s) = arg max
a

Q(s, a) ε% das 
vezes

• How to select an action

• Usually pick the one that seems the best, but also try out new actions! 

• Suponha que estamos em s e lá podemos executar 4 ações: 

• Temos estimativas para de quão bom é executar cada uma dessas ações 

• Q(s, a1), Q(s, a2), Q(s, a3) e Q(s, a4) 

• Escolhemos a maior! 

Q-Learning

Qk+1(s, a) � (1 � �)Qk(s, a) + �

�
r + � max

a�
Qk(s�, a�)

�

Q-Learning algorithm

• e.g. 

• execute the action with highest Q-value 90% of the time

• execute a random action 10% of the time

1. Agent is in , picks action . 
2. Receives reward  and observes next state 
3. Updates  → 

s a
r s′￼

Qk Qk+1
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�(s) = arg max
a

Q(s, a) ε% das 
vezes

• How to select an action

• Usually pick the one that seems the best, but also try out new actions! 

• Suponha que estamos em s e lá podemos executar 4 ações: 

• Temos estimativas para de quão bom é executar cada uma dessas ações 

• Q(s, a1), Q(s, a2), Q(s, a3) e Q(s, a4) 

• Escolhemos a maior! 

Q-Learning

Qk+1(s, a) � (1 � �)Qk(s, a) + �

�
r + � max

a�
Qk(s�, a�)

�

Q-Learning algorithm

• e.g. 

• execute the action with highest Q-value 90% of the time

• execute a random action 10% of the time

Initially agent doesn’t know environment/outcome of actions → Exploration

1. Agent is in , picks action . 
2. Receives reward  and observes next state 
3. Updates  → 

s a
r s′￼

Qk Qk+1
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Q-Learning

Qk+1(s, a) � (1 � �)Qk(s, a) + �

�
r + � max

a�
Qk(s�, a�)

�

https://www.youtube.com/watch?v=zOgSC---rgM
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Q-Learning Algorithm for    (tabular)q*

Initialize initial state: s ∼ d0

Loop for each episode:

Initialization:  initialize  arbitrarily   (except , by definition)q(s, a) q(s∞, ⋅ ) = 0
Algorithm parameter:  step size    and  small α ∈ (0,1] ϵ > 0

Loop for each step of the episode:

Take action , observe reward  and next state a r s′￼

s ← s′￼

until  is the terminal absorbing states

 q(s, a) ← q(s, a) + α(r + γ max
a′￼

q(s′￼, a′￼) − q(s, a))

Choose  from  using a policy derived from     // e.g., -greedy or softmaxa s q ϵ

Q-Learning

http://cs.umass.edu/~bsilva
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Q-Learning

Qk+1(s, a) � (1 � �)Qk(s, a) + �

�
r + � max

a�
Qk(s�, a�)

�

https://www.youtube.com/watch?t=26&v=cjpEIotvwFY
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https://www.youtube.com/watch?v=SH3bADiB7uQ

Reinforcement Learning
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Q ↑ ← ↓ →
s1=[1,1] 0.25 1.0 -0.66 0.1

s2=[1,2] 1.5 2.3 0.0 0.3

s3=[1,3] 0.21 1.2 1.4 0.0

s4=[1,4] 0.1 1.0 1.9 0.2

s5=[2,1] 0.1 0.8 0.32 0.3

s6=[2,3] 0.52 1.1 0.1 0.93

s7=[3,1] 0.5 1.7 1.6 0.9

s8=[3,2] 0.3 0.3 0.1 0.6

s9=[3,3] 2.1 4.2 0.21 3.2

Reinforcement Learning with (Q-)Value Function Approximation

Representing Q (in the case of discrete states)
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State?

Reinforcement Learning with (Q-)Value Function Approximation

Representing Q (in the case of continuous states)
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σ
x

y

s=[x,y,σ]

Reinforcement Learning with (Q-)Value Function Approximation

Representing Q (in the case of continuous states)

State:
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σ
x

y
Q a1 a2 … aN

s1=[0,0,0]

s2=[0,0,0.5]

s3=[0,0,1]

…

s1000=[0,1,0]

s1001=[0,1,0.5]

s1002=[0,1,1]

…

s=[x,y,σ]

Reinforcement Learning with (Q-)Value Function Approximation

Representing Q (in the case of continuous states)

How many possible values/rows?

State:

If we discretize x into 100 bins, y into 100 bins, and angle σ in 1 degree increments:
100*100*360 = 3.6 million states
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σ
x

y
Cannot store Q in a table!

s=[x,y,σ]

Reinforcement Learning with (Q-)Value Function Approximation

Representing Q (in the case of continuous states)

How many possible values/rows?

State:
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http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/


90Bruno Castro da Silva

s=[x,y,σ]

Modelo linear semelhante aos usados em regressão linear

p.ex.

- precisamos armazenamos/ajustar apenas 4 valores (θ0, θ1, θ2, θ3)
- ao invés dos 3.6 milhões de entradas em uma tabela

Reinforcement Learning with (Q-)Value Function Approximation

Representing Q (in the case of continuous states)

• Instead of storing Q-values in a table  
• Use an equation (with learnable weights) 

      → to compute/predict the Q-value of some state/action

Q↑(x, y, σ) = θ0 + θ1x + θ2y + θ3σ
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s=[x,y,σ]

Modelo linear semelhante aos usados em regressão linear

p.ex.

- precisamos armazenamos/ajustar apenas 4 valores (θ0, θ1, θ2, θ3)
- ao invés dos 3.6 milhões de entradas em uma tabela

Reinforcement Learning with (Q-)Value Function Approximation

Representing Q (in the case of continuous states)

some number

estimate of how good it is to  
execute action  when in state ↑ (x, y, σ)

• Instead of storing Q-values in a table  
• Use an equation (with learnable weights) 

      → to compute/predict the Q-value of some state/action

Q↑(x, y, σ) = θ0 + θ1x + θ2y + θ3σ

As we adjust weights θ, we obtain different functions
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1 4
1

3
+1

-1
4 actions (↑←↓→)
∞ continuous states

Reinforcement Learning with (Q-)Value Function Approximation
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Reinforcement Learning with (Q-)Value Function Approximation
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Reinforcement Learning with (Q-)Value Function Approximation
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Reinforcement Learning with (Q-)Value Function Approximation
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to represent the preference Q↑ for action ↑

to represent the preference Q↓ for action ↓

to represent the preference Q← for action ←

to represent the preference Q→ for action →

Reinforcement Learning with (Q-)Value Function Approximation

- now we need to store/adjust only 4 numbers θ for each action:

As we adjust weights θ, we obtain different functions
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Q ↑ ← ↓ →
s1=[1,1] 0.25 1.0 -0.66 0.1

s2=[1,2] 1.5 2.3 0.0 0.3

s3=[1,3] 0.21 1.2 1.4 0.0

s4=[1,4] 0.1 1.0 1.9 0.2

s5=[2,1] 0.1 0.8 0.32 0.3

s6=[2,3] 0.52 1.1 0.1 0.93

s7=[3,1] 0.5 1.7 1.6 0.9

s8=[3,2] 0.3 0.3 0.1 0.6

s9=[3,3] 2.1 4.2 0.21 3.2

onde

Representação de Q (tabela)

Atualização de Q (escrita na tabela)

Representação de Q (pesos)

Atualização de Q (ajuste nos pesos)
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Before (discrete states) Now (continuous states)

Environment Environment

http://cs.umass.edu/~bsilva
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/


Q ↑ ← ↓ →
s1=[1,1] 0.25 1.0 -0.66 0.1

s2=[1,2] 1.5 2.3 0.0 0.3

s3=[1,3] 0.21 1.2 1.4 0.0

s4=[1,4] 0.1 1.0 1.9 0.2

s5=[2,1] 0.1 0.8 0.32 0.3

s6=[2,3] 0.52 1.1 0.1 0.93

s7=[3,1] 0.5 1.7 1.6 0.9

s8=[3,2] 0.3 0.3 0.1 0.6

s9=[3,3] 2.1 4.2 0.21 3.2

onde

Atualização de Q (escrita na tabela) Atualização de Q (ajuste nos pesos)

98Bruno Castro da Silva

Before (discrete states) Now (continuous states)

Representing Q (table) Representing Q (weights)

Environment Environment
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Q ↑ ← ↓ →
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s8=[3,2] 0.3 0.3 0.1 0.6

s9=[3,3] 2.1 4.2 0.21 3.2
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where

Environment

Representing Q (table)

Updating Q (writing in the table)

Environment

Representing Q (weights)

Updating Q (adjusting weights)

Before (discrete states) Now (continuous states)

where
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