
Lecture 6: Probabilistic Classifiers (Naive Bayes) 
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but before that…
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Probability Theory - Review
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Die: probability of rolling a 2 = 1/6 = 1/3

X X
X

Review: Probability Theory

Die: probability of rolling a 2  
  given that it’s a special die  

that only produces even numbers
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Pr(Multiple of 4) = 7/12

Review: Probability Theory

4
8
16
20

12
24
36

3
9
15
45
51

Multiples of 4 Multiples of 3

Common factor

Pr(Multiple of 3) = 8/12

Pr(Multiple of 4 and Multiple of 3) = 3/12
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Pr(Multiple of 4) = 7/12
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Pr(Multiple of 4 and Multiple of 3) = 3/12

4
8
16
20

12
24
36

3
9
15
45
51

Multiples of 4 Multiples of 3

Pr(Multiple of 4 | Multiple of 3)



Slide from Bruno Castro da Silva 9

Pr(Multiple of 4) = 7/12

Review: Probability Theory

Common factor

Pr(Multiple of 3) = 8/12

Pr(Multiple of 4 | Multiple of 3)

Pr(Multiple of 4 and Multiple of 3) = 3/12

4
8
16
20

3
9
15
45
51

12
24
36

Multiples of 4 Multiples of 3

=
Pr(Multiple of 4 and Multiple of 3)

Pr(Multiple of 3)
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Pr(Multiple of 4) = 7/12

Review: Probability Theory

Common factor

Pr(Multiple of 3) = 8/12

Pr(Multiple of 4 | Multiple of 3)

Pr(Multiple of 4 and Multiple of 3) = 3/12

4
8
16
20

3
9
15
45
51

12
24
36

Multiples of 4 Multiples of 3

=
Pr(Multiple of 4 and Multiple of 3)

Pr(Multiple of 3)



Slide from Bruno Castro da Silva 11

Review: Probability Theory

Pr(Multiple of 4 | Multiple of 3) =
Pr(Multiple of 4 and Multiple of 3)

Pr(Multiple of 3)

a b
a,b

Pr(a | b) =
Pr(a, b)
Pr(b)
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Review: Probability Theory

a b
a,b

Pr(a | b) =
Pr(a, b)
Pr(b)

Pr(a | b) Pr(b) = Pr(a, b) Pr(b | a) Pr(a) = Pr(b, a)

Pr(a, b) = Pr(b, a)

Pr(b | a) =
Pr(b, a)
Pr(a)
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Review: Probability Theory

a b
a,b

Pr(a | b) =
Pr(a, b)
Pr(b)

Pr(a | b) Pr(b) = Pr(a, b) Pr(b | a) Pr(a) = Pr(b, a)

Pr(a, b) = Pr(b, a)

Pr(b | a) =
Pr(b, a)
Pr(a)
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Review: Probability Theory

a b
a,b

Pr(a | b) =
Pr(a, b)
Pr(b)

Pr(a | b) Pr(b) = Pr(a, b) Pr(b | a) Pr(a) = Pr(a, b)

Pr(a, b) = Pr(b, a)

Pr(b | a) =
Pr(b, a)
Pr(a)
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Pr(a | b) Pr(b) =

15

Review: Probability Theory

a b
a,b

Pr(a | b) =
Pr(a, b)
Pr(b)

Pr(a | b) Pr(b) = Pr(a, b)

Pr(b | a) =
Pr(b, a)
Pr(a)

Pr(b | a) Pr(a) = Pr(a, b)Pr(b | a) Pr(a)
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Pr(a | b) Pr(b) =

16

Review: Probability Theory

a b
a,b

Pr(a | b) =
Pr(a, b)
Pr(b)

Pr(a | b) Pr(b) = Pr(a, b)

Pr(b | a) =
Pr(b, a)
Pr(a)

Pr(b | a) Pr(a) = Pr(a, b)

Pr(b | a) Pr(a)
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Review: Probability Theory

a b
a,b

Pr(a | b) =
Pr(a, b)
Pr(b)

Pr(b | a) =
Pr(b, a)
Pr(a)

Pr(a | b) =
Pr(b | a) Pr(a)

Pr(b)

Pr(a | b) Pr(b) = Pr(b | a) Pr(a)
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Review: Probability Theory

a b
a,b

Pr(a | b) =
Pr(a, b)
Pr(b)

Pr(b | a) =
Pr(b, a)
Pr(a)

Pr(a | b) =
Pr(b | a) Pr(a)

Pr(b)

Bayes Theorem
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= 97.5%

= 2.5%

= 99%

•  Only 1% of the population has cancer (C)

•  0.2% of the population is 65 years old (A)
•  Considering the group of people who have cancer, 0.5% are 65 years old

•  If we don’t know anything about John, what is the probability that he has cancer? 

•  If we don’t know anything about John, what is the probability that he does not have cancer? 

•  If we know that John is 65 years old, what is the probability that he has cancer? 

•  If we know that John is 65 years old, what is the probability that he does not have cancer?

Pr(a | b) =
Pr(b | a) Pr(a)

Pr(b)

= 1%

Review: Bayes Theorem

Pr(C |A) =
Pr(A |C) Pr(C)

Pr(A)
=

(0.5/100) × (1/100)
(0.2/100)

=
(0.5 × 1)/100

0.2
= 2.5 %
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= 97.5%

= 2.5%

= 99%

•  Only 1% of the population has cancer (C)

•  0.2% of the population is 65 years old (A)
•  Considering the group of people who have cancer, 0.5% are 65 years old

•  If we don’t know anything about John, what is the probability that he has cancer? 

•  If we don’t know anything about John, what is the probability that he does not have cancer? 

•  If we know that John is 65 years old, what is the probability that he has cancer? 

•  If we know that John is 65 years old, what is the probability that he does not have cancer?

Pr(a | b) =
Pr(b | a) Pr(a)

Pr(b)

= 1%

Review: Bayes Theorem

After we found out John’s age (evidence), 
we adjusted our prior belief (a priori probability of cancer)
and obtained an updated belief (a posteriori probability)

→ prob. cancer = 1%
→ prob. cancer = 2.5%
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Review: Probability Theory

a b
a,b

Pr(a, b)Pr(a | b) Pr(b) =

Pr(a, b, c) ?
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Review: Probability Theory

a b
a,b

Pr(a, ∙ ) where  ∙  is (b,c)

Pr(a, b)Pr(a | b) Pr(b) =

Pr(a, b, c) ?
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Review: Probability Theory

a b
a,b

Pr(a, ∙ ) where  ∙  is (b,c)

Pr(a, b, c) ?

Pr(a, b) Pr(a | b) Pr(b)=Recall that → 
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Review: Probability Theory

a b
a,b

Pr(a, ∙ ) where  ∙  is (b,c)

Pr(a, b, c) ?

Pr(a, ∙ ) Pr(a | ∙ ) Pr( ∙ )=
Pr(a, b) Pr(a | b) Pr(b)=Recall that → 
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Review: Probability Theory

a b
a,b

Pr(a, ∙ ) where  ∙  is (b,c)

Pr(a, b, c) ?

Pr(a, ∙ ) Pr(a | ∙ ) Pr( ∙ )=
Pr(a, b) Pr(a | b) Pr(b)=

Pr(a, b, c) Pr(a | b, c) Pr(b, c)=

Recall that → 

Replacing 
def. of  ∙ →
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Review: Probability Theory

a b
a,b

Pr(a, ∙ ) where  ∙  is (b,c)

Pr(a, b, c) ?

Pr(a, ∙ ) Pr(a | ∙ ) Pr( ∙ )=
Pr(a, b) Pr(a | b) Pr(b)=

Pr(a, b, c) Pr(a | b, c) Pr(b, c)=

Recall that → 

Replacing 
def. of  ∙ →
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Review: Probability Theory

a b
a,b

Pr(a, ∙ ) where  ∙  is (b,c)

Pr(a, b, c) ?

Pr(a, ∙ ) Pr(a | ∙ ) Pr( ∙ )=
Pr(a, b) Pr(a | b) Pr(b)=

Pr(a, b, c) Pr(a | b, c) Pr(b, c)=
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Review: Probability Theory

a b
a,b

Pr(a, ∙ ) where  ∙  is (b,c)

Pr(a, b, c) ?

Pr(a, ∙ ) Pr(a | ∙ ) Pr( ∙ )=
Pr(a, b) Pr(a | b) Pr(b)=

Pr(a, b, c) Pr(a | b, c) Pr(b | c) Pr(c)=
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Review: Probability Theory

a b
a,b

Pr(a, b, c) Pr(a | b, c) Pr(b | c) Pr(c)=

Pr(a, b, c, d) = Pr(a | b, c, d) Pr(b | c, d) Pr(c | d) Pr(d)

Chain Rule

Similarly…
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Review: Probability Theory

a b
a,b

Pr(a, b | c) = Pr(a | c) Pr(b | c) [conditional independence]

 and  are conditionally independent given a b c

if we know that  happened,  does not influence  (and vice-versa)c a b
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Review: Probability Theory

a b
a,b

Pr(a, b | c) = Pr(a | c) Pr(b | c) [conditional independence]

Pr(a | b) =
Pr(a, b)
Pr(b)

← recall this identity 

let us add a new event, , to the LHS… c
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Review: Probability Theory

a b
a,b

Pr(a, b | c) = Pr(a | c) Pr(b | c) [conditional independence]

Pr(a | b) =
Pr(a, b)
Pr(b)

← recall this identity 

let us add a new event, , to the LHS… cPr(a | b, c)
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Review: Probability Theory

a b
a,b

Pr(a, b | c) = Pr(a | c) Pr(b | c) [conditional independence]

Pr(a | b) =
Pr(a, b)
Pr(b)

← recall this identity 

let us add a new event, , to the LHS… cPr(a | b, c) =
Pr(a, b )
Pr(b )

 | c
 | c
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Review: Probability Theory

a b
a,b

Pr(a, b | c) = Pr(a | c) Pr(b | c) [conditional independence]

let us add a new event, , to the LHS… cPr(a | b, c) =
Pr(a, b )
Pr(b )

 | c
 | c
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Review: Probability Theory

a b
a,b

Pr(a, b | c) = Pr(a | c) Pr(b | c) [conditional independence]

let us add a new event, , to the LHS… cPr(a | b, c) =
Pr(a, b )
Pr(b )

 | c
 | c

=
Pr(a ) Pr(b )

Pr(b )
 | c  | c

 | c
[applying def. of independence]
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Review: Probability Theory

a b
a,b

Pr(a, b | c) = Pr(a | c) Pr(b | c) [conditional independence]

let us add a new event, , to the LHS… cPr(a | b, c) =
Pr(a, b )
Pr(b )

 | c
 | c

=
Pr(a ) Pr(b )

Pr(b )
 | c  | c

 | c
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Review: Probability Theory

a b
a,b

Pr(a, b | c) = Pr(a | c) Pr(b | c) [conditional independence]

let us add a new event, , to the LHS… cPr(a | b, c) =
Pr(a, b )
Pr(b )

 | c
 | c

=
Pr(a ) Pr(b )

Pr(b )
 | c  | c

 | c
= Pr(a ) | c
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Review: Probability Theory

a b
a,b

Pr(a, b | c) = Pr(a | c) Pr(b | c) [conditional independence]

Pr(a | b, c) = Pr(a ) | c

That is, if  and  are independent given a b c
we can "delete"  from the conditional part of the equationb
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Review: Probability Theory

a b
a,b

[conditional independence]

Pr(a | b, c) = Pr(a ) | c

That is, if  and  are independent given a b c
we can "delete"  from the conditional part of the equationb

Pr(a, ∙ | c) = Pr(a | c) Pr( ∙ | c)
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Review: Probability Theory

a b
a,b

[conditional independence]

That is, if  and  are independent given a b c
we can "delete"  from the conditional part of the equationb

Pr(a, ∙ | c) = Pr(a | c) Pr( ∙ | c)

Pr(a | ∙ , c) = Pr(a ) | c
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Review: Probability Theory

a b
a,b

Pr(a, ∙ | c) = Pr(a | c) Pr( ∙ | c) [conditional independence]

Pr(a | ∙ , c) = Pr(a ) | c

That is, if  and any  are independent given a ∙ c
we can "delete"  from the conditional part of the equation∙
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Review: Probability Theory

a b
a,b

Pr(a | ∙ , c) = Pr(a ) | c

That is, if  and any  are independent given a ∙ c
we can "delete"  from the conditional part of the equation∙

Pr(go to Bluewall | sunny in Japan, hungry) = Pr(go to Bluewall |hungry)

Can “delete" sunny in Japan because I am conditioning
on what matters (hungry)



Slide from Bruno Castro da Silva 43

Review: Probability Theory

Pr(a | ∙ , c) = Pr(a ) | c

That is, if  and any  are independent given a ∙ c
we can "delete"  from the conditional part of the equation∙

Pr(a, b, c, d) = Pr(a | b, c, d) Pr(b | c, d) Pr(c | d) Pr(d)

Chain Rule

Pr(a | b) =
Pr(b | a) Pr(a)

Pr(b)
Bayes Theorem
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“Given a new email, is it more likely  
to be a SPAM or NOT SPAM?"

NOT 
SPAM

 SPAM

7/10 e-mails: 
SPAM

Most Likely Class/Label

● Intuition

e-mail Class
1 SPAM
2 SPAM
3 NOT SPAM
4 SPAM
5 SPAM
6 SPAM
7 SPAM
8 NOT SPAM
9 NOT SPAM
10 SPAM
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Probability(SPAM) = 0.7

NOT 
SPAM

 SPAM

7/10 e-mails: 
SPAM

 SPAM

Most Likely Class/Label

● Intuition

?

New emaile-mail Class
1 SPAM
2 SPAM
3 NOT SPAM
4 SPAM
5 SPAM
6 SPAM
7 SPAM
8 NOT SPAM
9 NOT SPAM
10 SPAM
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NOT 
SPAM

 SPAM
NOT 
SPAM

Most Likely Class/Label

● Intuition

“Given a new email whose contents are "review conference paper",  
it is more likely to be a SPAM or NOT SPAM?

?

New email

e-mail Contents Class
1 "password expired" SPAM
2 "send password" SPAM
3 "review conference" NOT SPAM
4 "password review" SPAM
5 "review account" SPAM
6 "account password" SPAM
7 "send account" SPAM
8 "conference paper" NOT SPAM
9 "send paper" NOT SPAM
10 "expired account" SPAM
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NOT 
SPAM

 SPAM
NOT 
SPAM

"Supondo um novo e-mail recebido, com conteúdo "review conference paper", é 
mais provável que ele seja SPAM ou NOT SPAM?"

What is the most likely class of the email?

Most Likely Class/Label

● Intuition

?

New email

e-mail Contents Class
1 "password expired" SPAM
2 "send password" SPAM
3 "review conference" NOT SPAM
4 "password review" SPAM
5 "review account" SPAM
6 "account password" SPAM
7 "send account" SPAM
8 "conference paper" NOT SPAM
9 "send paper" NOT SPAM
10 "expired account" SPAM
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Naive Bayes Classifier

• Probabilistic classifier

• Computes the probability of each class/label based on input attributes of an instance

… } max
Pr(y2 | x)

Pr(yN | x)

Pr(yi | x) = Pr(yi | x1, …, xn) C = arg max
yi ∈ Y

Pr(yi | x1, …, xn)

Pr(y1 | x)

http://cs.umass.edu/~bsilva
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
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Naive Bayes Classifier

• Probabilistic classifier

• Computes the probability of each class/label based on input attributes of an instance

… } max
Pr(y2 | x)

Pr(yN | x)

Pr(yi | x) = Pr(yi | x1, …, xn) C = arg max
yi ∈ Y

Pr(yi | x1, …, xn)

Pr(y1 | x)

Bayes Theorem

http://cs.umass.edu/~bsilva
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
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 = spam
 = not_spam

 = words in email

y1
y2

x = (x1, … xn)

Naive Bayes Classifier

Pr(yi) Pr(x1, …, xn | yi)
Pr(x1, …, xn)

Pr(yi | x) =
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 = spam
 = not_spam

 = words in email

y1
y2

x = (x1, … xn)

Naive Bayes Classifier

How to compute 
these probabilities

based on  
a training set?

Pr(yi) Pr(x1, …, xn | yi)
Pr(x1, …, xn)

Pr(yi | x) =
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 = spam
 = not_spam

 = words in email

y1
y2

x = (x1, … xn)

Naive Bayes Classifier

Pr(yi) Pr(x1, …, xn | yi)
Pr(x1, …, xn)

Pr(yi | x) =

You have an unclaimed 
inheritance (millions of dollars) 
on your surname. Kindly contact 
this email fchu123@yandex.com 
for more details. 
F. Chu.

mailto:fchu123@yandex.com
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 = spam
 = not_spam

 = words in email

y1
y2

x = (x1, … xn)

Naive Bayes Classifier

Which class has the highest probability, given the contents of the email?

Pr(yi) Pr(x1, …, xn | yi)
Pr(x1, …, xn)

Pr(yi | x) =

Pr(y = spam |x1 = inheritance, x2 = millions) =
Pr(y = spam) Pr(x1 = inheritance, x2 = millions | y = spam)

Pr(x1 = inheritance, x2 = millions)

Pr(y = not_spam |x1 = inheritance, x2 = millions) =
Pr(y = not_spam) Pr(x1 = inheritance, x2 = millions | y = not_spam)

Pr(x1 = inheritance, x2 = millions)
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 = spam
 = not_spam

 = words in email

y1
y2

x = (x1, … xn)

Naive Bayes Classifier

IF Pr(spam |contents) > Pr(not_spam |contents)

Pr(yi) Pr(x1, …, xn | yi)
Pr(x1, …, xn)

Pr(yi | x) =

Pr(y = spam |x1 = inheritance, x2 = millions) =
Pr(y = spam) Pr(x1 = inheritance, x2 = millions | y = spam)

Pr(x1 = inheritance, x2 = millions)

Pr(y = not_spam |x1 = inheritance, x2 = millions) =
Pr(y = not_spam) Pr(x1 = inheritance, x2 = millions | y = not_spam)

Pr(x1 = inheritance, x2 = millions)
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 = spam
 = not_spam

 = words in email

y1
y2

x = (x1, … xn)

Naive Bayes Classifier

IF Pr(spam |contents) < Pr(not_spam |contents)

Pr(yi) Pr(x1, …, xn | yi)
Pr(x1, …, xn)

Pr(yi | x) =

Pr(y = spam |x1 = inheritance, x2 = millions) =
Pr(y = spam) Pr(x1 = inheritance, x2 = millions | y = spam)

Pr(x1 = inheritance, x2 = millions)

Pr(y = not_spam |x1 = inheritance, x2 = millions) =
Pr(y = not_spam) Pr(x1 = inheritance, x2 = millions | y = not_spam)

Pr(x1 = inheritance, x2 = millions)
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 = spam
 = not_spam

 = words in email

y1
y2

x = (x1, … xn)

Naive Bayes Classifier

Which class has the highest probability, given the contents of the email?

Pr(yi) Pr(x1, …, xn | yi)
Pr(x1, …, xn)

Pr(yi | x) =

Pr(y = spam |x1 = inheritance, x2 = millions) =
Pr(y = spam) Pr(x1 = inheritance, x2 = millions | y = spam)

Pr(x1 = inheritance, x2 = millions)

Pr(y = not_spam |x1 = inheritance, x2 = millions) =
Pr(y = not_spam) Pr(x1 = inheritance, x2 = millions | y = not_spam)

Pr(x1 = inheritance, x2 = millions)

same denominator in both
quantities being compared 

→ can be ignored
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 = spam
 = not_spam

 = words in email

y1
y2

x = (x1, … xn)

Naive Bayes Classifier

Pr(yi) Pr(x1, …, xn | yi)
Pr(x1, …, xn)

Pr(yi | x) =

Pr(y = spam |x1 = inheritance, x2 = millions) ∝ Pr(y = spam) Pr(x1 = inheritance, x2 = millions | y = spam)

Pr(y = not_spam |x1 = inheritance, x2 = millions) ∝ Pr(y = not_spam) Pr(x1 = inheritance, x2 = millions | y = not_spam)

Which class has the highest probability, given the contents of the email?
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 = spam
 = not_spam

 = words in email

y1
y2

x = (x1, … xn)

Naive Bayes Classifier

Which class has the highest probability, given the contents of the email?

Pr(yi) Pr(x1, …, xn | yi)
Pr(x1, …, xn)

Pr(yi | x) =

arg max
yi ∈ Y

Pr(yi | x1, x2, …, xn)

Pr(y = spam |x1 = inheritance, x2 = millions) ∝ Pr(y = spam) Pr(x1 = inheritance, x2 = millions | y = spam)

Pr(y = not_spam |x1 = inheritance, x2 = millions) ∝ Pr(y = not_spam) Pr(x1 = inheritance, x2 = millions | y = not_spam)
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arg max
yi ∈ Y

Pr(yi | x1, x2, …, xn)

arg max
yi ∈ Y

Pr(x1, x2, …, xn | yi) Pr(yi)
Pr(x1, x2, …, xn)

Naive Bayes Classifier

Pr(a, b, c, d) = Pr(a | b, c, d) Pr(b | c, d) Pr(c | d) Pr(d)
Remember the chain rule:

Pr(x1, x2, …, xn | yi) ?

Pr(x1, x2, …, xn | yi) =
Pr(x1 | x2, x3, …, xn, yi) Pr(x2 | x3, x4, …, xn, yi) … Pr(xn−1 | xn, yi) Pr(xn | yi) Pr(yi)
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arg max
yi ∈ Y

Pr(x1, x2, …, xn | yi) Pr(yi)
Pr(x1, x2, …, xn)

Naive Bayes Classifier

Pr(x1, x2, …, xn | yi) =
Pr(x1 | x2, x3, …, xn, yi) Pr(x2 | x3, x4, …, xn, yi) … Pr(xn−1 | xn, yi) Pr(xn | yi)

Among all emails,  
the percentage  

of spams
Easy/fast to count
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arg max
yi ∈ Y

Pr(x1, x2, …, xn | yi) Pr(yi)
Pr(x1, x2, …, xn)

Naive Bayes Classifier

Pr(x1, x2, …, xn | yi) =
Pr(x1 | x2, x3, …, xn, yi) Pr(x2 | x3, x4, …, xn, yi) … Pr(xn−1 | xn, yi) Pr(xn | yi)

(example)

Among all emails,  
the percentage  

of spams
Easy/fast to count
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arg max
yi ∈ Y

Pr(x1, x2, …, xn | yi) Pr(yi)
Pr(x1, x2, …, xn)

Naive Bayes Classifier

Pr(x1, x2, …, xn | yi) =
Pr(x1 | x2, x3, …, xn, yi) Pr(x2 | x3, x4, …, xn, yi) … Pr(xn−1 | xn, yi) Pr(xn | yi)

Among all emails,  
the percentage  

of spams
Easy/fast to count

Easy/fast to count

Pr(x1 = inheritance, x2 = millions | yi = spam) = [using the Chain Rule…]

Among the spams, 
the percentage  

that contain 
the word millions

Pr(x1 = inheritance | x2 = millions, yi = spam) Pr(x2 = millions | yi = spam)
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arg max
yi ∈ Y

Pr(x1, x2, …, xn | yi) Pr(yi)
Pr(x1, x2, …, xn)

Naive Bayes Classifier

Pr(x1, x2, …, xn | yi) =
Pr(x1 | x2, x3, …, xn, yi) Pr(x2 | x3, x4, …, xn, yi) … Pr(xn−1 | xn, yi) Pr(xn | yi)

Among all emails,  
the percentage  

of spams
Easy/fast to count

Pr(x1 = inheritance, x2 = millions | yi = spam) = [using the Chain Rule…]

Easy/fast to count

Among the spams that contain the word millions, 
the percentage that also contain the word inheritance  

Hard/slow to count

Pr(x1 = inheritance | x2 = millions, yi = spam) Pr(x2 = millions | yi = spam)

Among the spams, 
the percentage  

that contain 
the word millions
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That is: if I know the email is a spam,
knowing that it contains the word inheritance  

does not tell me anything  
about how likely it is for millions to also show up

Naive Bayes assumption:
inheritance and millions are conditionally independent given spam

Naive Bayes Classifier

Pr(x1 = inheritance, x2 = millions | yi = spam) = [using the Chain Rule…]

Among the spams that contain the word millions, 
the percentage that also contain the word inheritance  

Hard/slow to count

Pr(x1 = inheritance | x2 = millions, yi = spam) Pr(x2 = millions | yi = spam)
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The probability of inheritance showing up depends only on whether it is a spam  
but it does not depend on any other words

The probability of inheritance and millions are independent given that it’s a spam

Naive Bayes assumption:
inheritance and millions are conditionally independent given spam

Naive Bayes Classifier

Pr(x1 = inheritance, x2 = millions | yi = spam) = [using the Chain Rule…]

Among the spams that contain the word millions, 
the percentage that also contain the word inheritance  

Hard/slow to count

Pr(x1 = inheritance | x2 = millions, yi = spam) Pr(x2 = millions | yi = spam)
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True? Not really…. these words show up together all the time!

Pr(x1 = inheritance | x2 = millions, yi = spam) = Pr(x1 = inheritance | yi = spam)

Naive Bayes assumption:
inheritance and millions are conditionally independent given spam

Naive Bayes Classifier

Pr(x1 = inheritance, x2 = millions | yi = spam) = [using the Chain Rule…]

Among the spams that contain the word millions, 
the percentage that also contain the word inheritance  

Hard/slow to count

Pr(x1 = inheritance | x2 = millions, yi = spam) Pr(x2 = millions | yi = spam)



68Slide from Bruno Castro da Silva

arg max
yi ∈ Y

Pr(x1, x2, …, xn | yi) Pr(yi)
Pr(x1, x2, …, xn)

Naive Bayes Classifier

Pr(x1 = inheritance | x2 = millions, yi = spam) = Pr(x1 = inheritance | yi = spam)
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arg max
yi ∈ Y

Pr(x1, x2, …, xn | yi) Pr(yi)
Pr(x1, x2, …, xn)

Naive Bayes Classifier

More generally …

Naive Bayes assumption:
 and all other words  are  

conditionally independent given the class 
xi xi+1, …, xn

yi
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arg max
yi ∈ Y

Pr(x1, x2, …, xn | yi) Pr(yi)
Pr(x1, x2, …, xn)

Naive Bayes Classifier

Naive Bayes assumption:
 and all other words  are  

conditionally independent given the class 
xi xi+1, …, xn

yi

Pr(x1 | yi) Pr(x2 | yi) … Pr(xn−1 | yi) Pr(xn | yi)

Pr(x1, x2, …, xn | yi) =

Pr(x1 | x2, x3, …, xn, yi) Pr(x2 | x3, x4, …, xn, yi) … Pr(xn−1 | xn, yi) Pr(xn | yi)

=

Pr(xi | yi)Pr(xi | xi+1, …, xn, yi) =



71Slide from Bruno Castro da Silva

arg max
yi ∈ Y

Pr(x1, x2, …, xn | yi) Pr(yi)
Pr(x1, x2, …, xn)

Naive Bayes Classifier

Pr(x1 | yi) Pr(x2 | yi) … Pr(xn−1 | yi) Pr(xn | yi)Pr(x1, x2, …, xn | yi) =
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arg max
yi ∈ Y

Pr(x1, x2, …, xn | yi) Pr(yi)
Pr(x1, x2, …, xn)

Naive Bayes Classifier

Pr(x1 | yi) Pr(x2 | yi) … Pr(xn−1 | yi) Pr(xn | yi)Pr(x1, x2, …, xn | yi) =
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arg max
yi ∈ Y

Pr(x1, x2, …, xn | yi) Pr(yi)
Pr(x1, x2, …, xn)

Naive Bayes Classifier

arg max
yi ∈ Y

Pr(x1 | yi) Pr(x2 | yi) … Pr(xn−1 | yi) Pr(xn | yi) Pr(yi)
Pr(x1, x2, …, xn)

Pr(x1 | yi) Pr(x2 | yi) … Pr(xn−1 | yi) Pr(xn | yi)Pr(x1, x2, …, xn | yi) =
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arg max
yi ∈ Y

Pr(x1, x2, …, xn | yi) Pr(yi)
Pr(x1, x2, …, xn)

Naive Bayes Classifier

arg max
yi ∈ Y

Pr(x1 | yi) Pr(x2 | yi) … Pr(xn−1 | yi) Pr(xn | yi) Pr(yi)
Pr(x1, x2, …, xn)

arg max
yi ∈ Y

Pr(yi) ∏n
k=1 Pr(xk | yi)

Pr(x1, x2, …, xn)

Pr(x1 | yi) Pr(x2 | yi) … Pr(xn−1 | yi) Pr(xn | yi)Pr(x1, x2, …, xn | yi) =
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arg max
yi ∈ Y

Pr(x1, x2, …, xn | yi) Pr(yi)
Pr(x1, x2, …, xn)

Naive Bayes Classifier

arg max
yi ∈ Y

Pr(x1 | yi) Pr(x2 | yi) … Pr(xn−1 | yi) Pr(xn | yi) Pr(yi)
Pr(x1, x2, …, xn)

Doesn’t depend on the  
variable being maximized ( )yi

Pr(x1 | yi) Pr(x2 | yi) … Pr(xn−1 | yi) Pr(xn | yi)Pr(x1, x2, …, xn | yi) =

arg max
yi ∈ Y

Pr(yi) ∏n
k=1 Pr(xk | yi)

Pr(x1, x2, …, xn)
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arg max
yi ∈ Y

Pr(x1, x2, …, xn | yi) Pr(yi)
Pr(x1, x2, …, xn)

Naive Bayes Classifier

arg max
yi ∈ Y

Pr(x1 | yi) Pr(x2 | yi) … Pr(xn−1 | yi) Pr(xn | yi) Pr(yi)
Pr(x1, x2, …, xn)

Pr(x1 | yi) Pr(x2 | yi) … Pr(xn−1 | yi) Pr(xn | yi)Pr(x1, x2, …, xn | yi) =

arg max
yi ∈ Y

Pr(yi)
n

∏
k=1

Pr(xk | yi)
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Naive Bayes Classifier

Predicted class

arg max
yi ∈ Y

Pr(yi)
n

∏
k=1

Pr(xk | yi)
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 = spam
 = not_spam

 = words in email

y1
y2

x = (x1, … xn)

Naive Bayes Classifier

Pr(yi | x) =
Pr(yi) Pr(x1, …, xn | yi )

Pr(x1, …, xn)

Pr(y = spam |x1 = inheritance, x2 = millions) ∝ Pr(y = spam) ×

Which class has the highest probability, given the contents of the email?

Pr(y = not_spam |x1 = inheritance, x2 = millions) ∝ Pr(y = not_spam) ×

Pr(x1 = inheritance | y = not_spam) Pr(x2 = millions | y = not_spam)

Pr(x1 = inheritance | y = spam) Pr(x2 = millions | y = spam)
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 = spam
 = not_spam

 = words in email

y1
y2

x = (x1, … xn)

Naive Bayes Classifier

Pr(yi | x) =
Pr(yi) Pr(x1, …, xn | yi )

Pr(x1, …, xn)

spams
emails

×
spams containing inheritance

spams
×

spams containing millions
spams

Pr(y = spam |x1 = inheritance, x2 = millions) ∝ Pr(y = spam) ×

Pr(x1 = inheritance | y = spam) Pr(x2 = millions | y = spam)
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 = spam
 = not_spam

 = words in email

y1
y2

x = (x1, … xn)

Naive Bayes Classifier

Pr(yi | x) =
Pr(yi) Pr(x1, …, xn | yi )

Pr(x1, …, xn)

spams
emails

×
spams containing inheritance

spams
×

spams containing millions
spams

Pr(y = spam |x1 = inheritance, x2 = millions) ∝ Pr(y = spam) ×

Pr(x1 = inheritance | y = spam) Pr(x2 = millions | y = spam)
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 = spam
 = not_spam

 = words in email

y1
y2

x = (x1, … xn)

Naive Bayes Classifier

Pr(yi | x) =
Pr(yi) Pr(x1, …, xn | yi )

Pr(x1, …, xn)

spams
emails

×
spams containing inheritance

spams
×

spams containing millions
spams

Pr(y = spam) ×

Pr(x1 = inheritance | y = spam) Pr(x2 = millions | y = spam)

Pr(y = spam |x1 = inheritance, x2 = millions) ∝
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 = spam
 = not_spam

 = words in email

y1
y2

x = (x1, … xn)

Naive Bayes Classifier

Pr(yi | x) =
Pr(yi) Pr(x1, …, xn | yi )

Pr(x1, …, xn)

not_spams
emails

×
not_spams containing inheritance

not_spams
×

not_spams containing millions
not_spams

Pr(y = not_spam |x1 = inheritance, x2 = millions) ∝

spams
emails

×
spams containing inheritance

spams
×

spams containing millions
spams

Pr(y = spam |x1 = inheritance, x2 = millions) ∝

in practice
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 = spam
 = not_spam

 = words in email

y1
y2

x = (x1, … xn)

Naive Bayes Classifier

Pr(yi | x) =
Pr(yi) Pr(x1, …, xn | yi )

Pr(x1, …, xn)

Pr(y = spam |x1 = inheritance, x2 = millions) ∝

Pr(y = not_spam |x1 = inheritance, x2 = millions) ∝} max

in practice
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•We wish to predict: will a red SUV made in the U.S. be stolen?

Naive Bayes Classifier - Example

Instance # Color Type Made_In Class/Label: 
Likely to be stolen?

1 Red Convertible USA Yes

2 Red Convertible USA No

3 Red Convertible USA Yes

4 Yellow Convertible USA No

5 Yellow Convertible Imported Yes

6 Yellow SUV Imported No

7 Yellow SUV Imported Yes

8 Yellow SUV USA No

9 Red Convertible Imported No

10 Red Convertible Imported Yes

y := arg max
yi ∈ Y

Pr(yi)
n

∏
k=1

Pr(xk | yi)
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Naive Bayes Classifier - Example

will a 
red SUV made in the U.S. 

be stolen?

Instance # Color Type Made_In Class/Label: 
Likely to be stolen?

1 Red Convertible USA Yes

2 Red Convertible USA No

3 Red Convertible USA Yes

4 Yellow Convertible USA No

5 Yellow Convertible Imported Yes

6 Yellow SUV Imported No

7 Yellow SUV Imported Yes

8 Yellow SUV USA No

9 Red Convertible Imported No

10 Red Convertible Imported Yes

Pr(Stolen=yes |color=Red, type=SUV, made_in=USA)
Pr(Stolen=no |color=Red, type=SUV, made_in=USA)

y := arg max
yi ∈ Y

Pr(yi)
n

∏
k=1

Pr(xk | yi)
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Naive Bayes Classifier - Example

will a  
red SUV made in the U.S. 

get stolen?

Pr(Stolen=Yes) =
5
10

Pr(Color=Red | Stolen=Yes) =
3
5

Pr(Made_In = USA | Stolen=Yes) =
2
5

Pr(Type = SUV | Stolen=Yes) =
1
5

Pr(Stolen=No) =
5
10

Pr(Color=Red | Stolen=No) =
2
5

Pr(Made_In = USA | Stolen=No) =
3
5

Pr(Type = SUV | Stolen=No) =
2
5

Pr(Stolen=yes |color=Red, type=SUV, made_in=USA)

Pr(Stolen=no |color=Red, type=SUV, made_in=USA)

Instance # Color Type Made_In Class/Label: 
Likely to be stolen?

1 Red Convertible USA Yes
2 Red Convertible USA No
3 Red Convertible USA Yes
4 Yellow Convertible USA No
5 Yellow Convertible Imported Yes
6 Yellow SUV Imported No
7 Yellow SUV Imported Yes
8 Yellow SUV USA No
9 Red Convertible Imported No
10 Red Convertible Imported Yes

= Pr(Stolen) × Pr(Red | Stolen) × Pr(USA | Stolen) × Pr(SUV | Stolen)

= Pr(Not_Stolen) × Pr(Red | Not_Stolen) × Pr(USA | Not_Stolen) × Pr(SUV | Not_Stolen)
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Naive Bayes Classifier - Example

will a  
red SUV made in the U.S. 

get stolen?

Pr(Stolen=yes |color=Red, type=SUV, made_in=USA)

Pr(Stolen=no |color=Red, type=SUV, made_in=USA)

Instance # Color Type Made_In Class/Label: 
Likely to be stolen?

1 Red Convertible USA Yes
2 Red Convertible USA No
3 Red Convertible USA Yes
4 Yellow Convertible USA No
5 Yellow Convertible Imported Yes
6 Yellow SUV Imported No
7 Yellow SUV Imported Yes
8 Yellow SUV USA No
9 Red Convertible Imported No
10 Red Convertible Imported Yes

= Pr(Stolen) × Pr(Red | Stolen) × Pr(USA | Stolen) × Pr(SUV | Stolen)

= Pr(Not_Stolen) × Pr(Red | Not_Stolen) × Pr(USA | Not_Stolen) × Pr(SUV | Not_Stolen)

Pr(Stolen=Yes) =
5
10

Pr(Color=Red | Stolen=Yes) =
3
5

Pr(Made_In = USA | Stolen=Yes) =
2
5

Pr(Type = SUV | Stolen=Yes) =
1
5

Pr(Stolen=No) =
5
10

Pr(Color=Red | Stolen=No) =
2
5

Pr(Made_In = USA | Stolen=No) =
3
5

=
5

10
� 3

5
� 2

5
� 1

5
=

30

10 � 53

=
5

10
� 2

5
� 3

5
� 3

5
=

90

10 � 53

Pr(Type = SUV | Stolen=No) =
2
5

2  60 
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Naive Bayes Classifier - Problem #1

will a  
red SUV made in the U.S. 

get stolen?

Pr(Stolen=yes |color=Red, type=SUV, made_in=USA)

Instance # Color Type Made_In Class/Label: 
Likely to be stolen?

1 Red Convertible USA Yes
2 Red Convertible USA No
3 Red Convertible USA Yes
4 Yellow Convertible USA No
5 Yellow Convertible Imported Yes
6 Yellow SUV Imported No
7 Yellow SUV Imported Yes
8 Yellow SUV USA No
9 Red Convertible Imported No
10 Red Convertible Imported Yes

= Pr(Stolen) × Pr(Red | Stolen) × Pr(USA | Stolen) × Pr(SUV | Stolen)

Pr(Stolen=Yes) =
5
10

Pr(Color=Red | Stolen=Yes) =
3
5

Pr(Made_In = USA | Stolen=Yes) =
2
5

Pr(Type = SUV | Stolen=Yes) =
1
5

What would happen if there were no Red examples in the training set?

?
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Naive Bayes Classifier - Problem #1

will a  
red SUV made in the U.S. 

get stolen?

Pr(Stolen=yes |color=Red, type=SUV, made_in=USA)

Instance # Color Type Made_In Class/Label: 
Likely to be stolen?

1 Red Convertible USA Yes
2 Red Convertible USA No
3 Red Convertible USA Yes
4 Yellow Convertible USA No
5 Yellow Convertible Imported Yes
6 Yellow SUV Imported No
7 Yellow SUV Imported Yes
8 Yellow SUV USA No
9 Red Convertible Imported No
10 Red Convertible Imported Yes

= Pr(Stolen) × Pr(Red | Stolen) × Pr(USA | Stolen) × Pr(SUV | Stolen)

Pr(Stolen=Yes) =
5
10

Pr(Color=Red | Stolen=Yes) =
3
5

Pr(Made_In = USA | Stolen=Yes) =
2
5

Pr(Type = SUV | Stolen=Yes) =
1
5

What would happen if there were no Red examples in the training set?

0
P (cor=Vermelho|Roubada=Sim) =

3

5
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Naive Bayes Classifier - Problem #1

will a  
red SUV made in the U.S. 

get stolen?

Pr(Stolen=yes |color=Red, type=SUV, made_in=USA)

Instance # Color Type Made_In Class/Label: 
Likely to be stolen?

1 Red Convertible USA Yes
2 Red Convertible USA No
3 Red Convertible USA Yes
4 Yellow Convertible USA No
5 Yellow Convertible Imported Yes
6 Yellow SUV Imported No
7 Yellow SUV Imported Yes
8 Yellow SUV USA No
9 Red Convertible Imported No
10 Red Convertible Imported Yes

= Pr(Stolen) × Pr(Red | Stolen) × Pr(USA | Stolen) × Pr(SUV | Stolen)

Pr(Stolen=Yes) =
5
10

Pr(Color=Red | Stolen=Yes) =
3
5

Pr(Made_In = USA | Stolen=Yes) =
2
5

Pr(Type = SUV | Stolen=Yes) =
1
5

What would happen if there were no Red examples in the training set?

0
P (cor=Vermelho|Roubada=Sim) =

3

5

=
5

10
� 3

5
� 2

5
� 1

5
=

30

10 � 53
=

5

10
� 3

5
� 2

5
� 1

5
=

30

10 � 53

0
P (cor=Vermelho|Roubada=Sim) =

3

5
0
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Naive Bayes Classifier - Problem #1

will a  
red SUV made in the U.S. 

get stolen?

Pr(Stolen=yes |color=Red, type=SUV, made_in=USA)

Instance # Color Type Made_In Class/Label: 
Likely to be stolen?

1 Red Convertible USA Yes
2 Red Convertible USA No
3 Red Convertible USA Yes
4 Yellow Convertible USA No
5 Yellow Convertible Imported Yes
6 Yellow SUV Imported No
7 Yellow SUV Imported Yes
8 Yellow SUV USA No
9 Red Convertible Imported No
10 Red Convertible Imported Yes

= Pr(Stolen) × Pr(Red | Stolen) × Pr(USA | Stolen) × Pr(SUV | Stolen)

Pr(Stolen=Yes) =
5
10

Pr(Color=Red | Stolen=Yes) =
3
5

Pr(Made_In = USA | Stolen=Yes) =
2
5

Pr(Type = SUV | Stolen=Yes) =
1
5

What would happen if there were no Red examples in the training set?

0
P (cor=Vermelho|Roubada=Sim) =

3

5

=
5

10
� 3

5
� 2

5
� 1

5
=

30

10 � 53
=

5

10
� 3

5
� 2

5
� 1

5
=

30

10 � 53

0
P (cor=Vermelho|Roubada=Sim) =

3

5
0

Would always estimate zero probability!
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Possible solution: Laplace Smoothing   
                   →  adds (to numerator) 1  
                   →  adds (to denominator) the number of possible values of the attribute  
                     e.g.,   |Color| = |{Red, Yellow}| = 2

Pr(Color=Red | Stolen=Yes) = #stolenRedCars + 1  =   0 + 1  =  1  
                                                   #stolenCars + 2           5 + 2       7

Naive Bayes Classifier - Problem #1

will a  
red SUV made in the U.S. 

get stolen?

Pr(Stolen=yes |color=Red, type=SUV, made_in=USA)

Instance # Color Type Made_In Class/Label: 
Likely to be stolen?

1 Red Convertible USA Yes
2 Red Convertible USA No
3 Red Convertible USA Yes
4 Yellow Convertible USA No
5 Yellow Convertible Imported Yes
6 Yellow SUV Imported No
7 Yellow SUV Imported Yes
8 Yellow SUV USA No
9 Red Convertible Imported No
10 Red Convertible Imported Yes

= Pr(Stolen) × Pr(Red | Stolen) × Pr(USA | Stolen) × Pr(SUV | Stolen)

Pr(Stolen=Yes) =
5
10

Pr(Color=Red | Stolen=Yes) =
3
5

Pr(Made_In = USA | Stolen=Yes) =
2
5

Pr(Type = SUV | Stolen=Yes) =
1
5

0
P (cor=Vermelho|Roubada=Sim) =

3

5

=
5

10
� 3

5
� 2

5
� 1

5
=

30

10 � 53
=

5

10
� 3

5
� 2

5
� 1

5
=

30

10 � 53

0
P (cor=Vermelho|Roubada=Sim) =

3

5
0
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Possible solution: Laplace Smoothing   
                   →  adds (to numerator) 1  
                   →  adds (to denominator) the number of possible values of the attribute  
                     e.g.,   |Color| = |{Red, Yellow}| = 2

Pr(Color=Red | Stolen=Yes) = #stolenRedCars + 1  =   0 + 1  =  1  
                                                   #stolenCars + 2           5 + 2       7

Naive Bayes Classifier - Problem #1

0+1 = 1
5+2    7

will a  
red SUV made in the U.S. 

get stolen?

Pr(Stolen=yes |color=Red, type=SUV, made_in=USA)

Instance # Color Type Made_In Class/Label: 
Likely to be stolen?

1 Red Convertible USA Yes
2 Red Convertible USA No
3 Red Convertible USA Yes
4 Yellow Convertible USA No
5 Yellow Convertible Imported Yes
6 Yellow SUV Imported No
7 Yellow SUV Imported Yes
8 Yellow SUV USA No
9 Red Convertible Imported No
10 Red Convertible Imported Yes

= Pr(Stolen) × Pr(Red | Stolen) × Pr(USA | Stolen) × Pr(SUV | Stolen)

Pr(Stolen=Yes) =
5
10

Pr(Color=Red | Stolen=Yes) =
3
5

Pr(Made_In = USA | Stolen=Yes) =
2
5

Pr(Type = SUV | Stolen=Yes) =
1
5

0
P (cor=Vermelho|Roubada=Sim) =

3

5

=
5

10
� 3

5
� 2

5
� 1

5
=

30

10 � 53
=

5

10
� 3

5
� 2

5
� 1

5
=

30

10 � 53

0
P (cor=Vermelho|Roubada=Sim) =

3

5
0

x
 5+1  =  6
10+2    12x x 2+1 = 3

5+2    7
1+1 = 2
5+2    7x
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Naive Bayes Classifier - Problem #2

will a  
red SUV made in the U.S. 

get stolen?

Pr(Stolen=yes |color=Red, type=SUV, made_in=USA)

Pr(Stolen=no |color=Red, type=SUV, made_in=USA)

Instance # Color Type Made_In Class/Label: 
Likely to be stolen?

1 Red Convertible USA Yes
2 Red Convertible USA No
3 Red Convertible USA Yes
4 Yellow Convertible USA No
5 Yellow Convertible Imported Yes
6 Yellow SUV Imported No
7 Yellow SUV Imported Yes
8 Yellow SUV USA No
9 Red Convertible Imported No
10 Red Convertible Imported Yes

= Pr(Stolen) × Pr(Red | Stolen) × Pr(USA | Stolen) × Pr(SUV | Stolen)

= Pr(Not_Stolen) × Pr(Red | Not_Stolen) × Pr(USA | Not_Stolen) × Pr(SUV | Not_Stolen)

=
5

10
� 3

5
� 2

5
� 1

5
=

30

10 � 53 } which 
is 

larger?
=

5

10
� 2

5
� 3

5
� 3

5
=

90

10 � 53

2  60 
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Naive Bayes Classifier - Problem #2

will a  
red SUV made in the U.S. 

get stolen?

Pr(Stolen=yes |color=Red, type=SUV, made_in=USA)

Pr(Stolen=no |color=Red, type=SUV, made_in=USA)

Instance # Color Type Made_In Class/Label: 
Likely to be stolen?

1 Red Convertible USA Yes
2 Red Convertible USA No
3 Red Convertible USA Yes
4 Yellow Convertible USA No
5 Yellow Convertible Imported Yes
6 Yellow SUV Imported No
7 Yellow SUV Imported Yes
8 Yellow SUV USA No
9 Red Convertible Imported No
10 Red Convertible Imported Yes

= Pr(Stolen) × Pr(Red | Stolen) × Pr(USA | Stolen) × Pr(SUV | Stolen)

= Pr(Not_Stolen) × Pr(Red | Not_Stolen) × Pr(USA | Not_Stolen) × Pr(SUV | Not_Stolen)

=
5

10
� 3

5
� 2

5
� 1

5
=

30

10 � 53 } which 
is 

larger?

               1     x    35   x   52   x    27   x   67  x   181  
            1000       550      550      550      550      550        (                             )E.g.: =   .00000000956

Multiplying many small numbers between 0 and 1 (fractions)
      Rapidly gets close to zero
      Problems losing precision due to floating point representation

=
5

10
� 2

5
� 3

5
� 3

5
=

90

10 � 53

2  60 
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Naive Bayes Classifier - Problem #2

will a  
red SUV made in the U.S. 

get stolen?

Pr(Stolen=yes |color=Red, type=SUV, made_in=USA)

Pr(Stolen=no |color=Red, type=SUV, made_in=USA)

Instance # Color Type Made_In Class/Label: 
Likely to be stolen?

1 Red Convertible USA Yes
2 Red Convertible USA No
3 Red Convertible USA Yes
4 Yellow Convertible USA No
5 Yellow Convertible Imported Yes
6 Yellow SUV Imported No
7 Yellow SUV Imported Yes
8 Yellow SUV USA No
9 Red Convertible Imported No
10 Red Convertible Imported Yes

= Pr(Stolen) × Pr(Red | Stolen) × Pr(USA | Stolen) × Pr(SUV | Stolen)

= Pr(Not_Stolen) × Pr(Red | Not_Stolen) × Pr(USA | Not_Stolen) × Pr(SUV | Not_Stolen)

=
5

10
� 3

5
� 2

5
� 1

5
=

30

10 � 53 } which 
is 

larger?

               1     x    35   x   52   x    27   x   67  x   181  
            1000       550      550      550      550      550        (                             )E.g.: =   .00000000956

Possible solution: to compare the logarithm of those quantities!

=
5

10
� 2

5
� 3

5
� 3

5
=

90

10 � 53

2  60 
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Naive Bayes Classifier - Problem #2

will a  
red SUV made in the U.S. 

get stolen?

Pr(Stolen=yes |color=Red, type=SUV, made_in=USA)

Pr(Stolen=no |color=Red, type=SUV, made_in=USA)

Instance # Color Type Made_In Class/Label: 
Likely to be stolen?

1 Red Convertible USA Yes
2 Red Convertible USA No
3 Red Convertible USA Yes
4 Yellow Convertible USA No
5 Yellow Convertible Imported Yes
6 Yellow SUV Imported No
7 Yellow SUV Imported Yes
8 Yellow SUV USA No
9 Red Convertible Imported No
10 Red Convertible Imported Yes

= Pr(Stolen) × Pr(Red | Stolen) × Pr(USA | Stolen) × Pr(SUV | Stolen)

= Pr(Not_Stolen) × Pr(Red | Not_Stolen) × Pr(USA | Not_Stolen) × Pr(SUV | Not_Stolen)

} which 
is 

larger?

               1     x    35   x   52   x    27   x   67  x   181  
            1000       550      550      550      550      550        (                             )E.g.: =   .00000000956

Possible solution: to compare the logarithm of those quantities!

=
5

10
� 3

5
� 2

5
� 1

5
=

30

10 � 53log(             )

=
5

10
� 2

5
� 3

5
� 3

5
=

90

10 � 53log(             )

=

=
2
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Naive Bayes Classifier - Problem #2

will a  
red SUV made in the U.S. 

get stolen?

Pr(Stolen=yes |color=Red, type=SUV, made_in=USA)

Pr(Stolen=no |color=Red, type=SUV, made_in=USA)

Instance # Color Type Made_In Class/Label: 
Likely to be stolen?

1 Red Convertible USA Yes
2 Red Convertible USA No
3 Red Convertible USA Yes
4 Yellow Convertible USA No
5 Yellow Convertible Imported Yes
6 Yellow SUV Imported No
7 Yellow SUV Imported Yes
8 Yellow SUV USA No
9 Red Convertible Imported No
10 Red Convertible Imported Yes

= Pr(Stolen) × Pr(Red | Stolen) × Pr(USA | Stolen) × Pr(SUV | Stolen)

= Pr(Not_Stolen) × Pr(Red | Not_Stolen) × Pr(USA | Not_Stolen) × Pr(SUV | Not_Stolen)

} which 
is 

larger?

               1     x    35   x   52   x    27   x   67  x   181  
            1000       550      550      550      550      550        (                             )E.g.:

Possible solution: to compare the logarithm of those quantities!

=
5

10
� 3

5
� 2

5
� 1

5
=

30

10 � 53log(             )=

=

log =  ?

=
5

10
� 2

5
� 3

5
� 3

5
=

90

10 � 53log(             )2



               1        +             35       +            52       +            27      +             67       +             181  
            1000                   550                   550                    550                   550                    550
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Naive Bayes Classifier - Problem #2

will a  
red SUV made in the U.S. 

get stolen?

Pr(Stolen=yes |color=Red, type=SUV, made_in=USA)

Pr(Stolen=no |color=Red, type=SUV, made_in=USA)

Instance # Color Type Made_In Class/Label: 
Likely to be stolen?

1 Red Convertible USA Yes
2 Red Convertible USA No
3 Red Convertible USA Yes
4 Yellow Convertible USA No
5 Yellow Convertible Imported Yes
6 Yellow SUV Imported No
7 Yellow SUV Imported Yes
8 Yellow SUV USA No
9 Red Convertible Imported No
10 Red Convertible Imported Yes

= Pr(Stolen) × Pr(Red | Stolen) × Pr(USA | Stolen) × Pr(SUV | Stolen)

= Pr(Not_Stolen) × Pr(Red | Not_Stolen) × Pr(USA | Not_Stolen) × Pr(SUV | Not_Stolen)

} which 
is 

larger?

               1     x    35   x   52   x    27   x   67  x   181  
            1000       550      550      550      550      550        (                             )E.g.:

=
5

10
� 3

5
� 2

5
� 1

5
=

30

10 � 53log(             )=

=

log

= log                    log                    log                    log                    log                    log               1                      35                      52                     27                     67                      181  
            1000                   550                   550                    550                   550                    550(   ) (   ) (   ) (   ) (   ) (   )

=
5

10
� 2

5
� 3

5
� 3

5
=

90

10 � 53log(             )2



               1        +             35       +            52       +            27      +             67       +             181  
            1000                   550                   550                    550                   550                    550
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Naive Bayes Classifier - Problem #2

will a  
red SUV made in the U.S. 

get stolen?

Pr(Stolen=yes |color=Red, type=SUV, made_in=USA)

Pr(Stolen=no |color=Red, type=SUV, made_in=USA)

Instance # Color Type Made_In Class/Label: 
Likely to be stolen?

1 Red Convertible USA Yes
2 Red Convertible USA No
3 Red Convertible USA Yes
4 Yellow Convertible USA No
5 Yellow Convertible Imported Yes
6 Yellow SUV Imported No
7 Yellow SUV Imported Yes
8 Yellow SUV USA No
9 Red Convertible Imported No
10 Red Convertible Imported Yes

= Pr(Stolen) × Pr(Red | Stolen) × Pr(USA | Stolen) × Pr(SUV | Stolen)

= Pr(Not_Stolen) × Pr(Red | Not_Stolen) × Pr(USA | Not_Stolen) × Pr(SUV | Not_Stolen)

} which 
is 

larger?

=
5

10
� 3

5
� 2

5
� 1

5
=

30

10 � 53log(             )=

=

= log                    log                    log                    log                    log                    log               1                      35                      52                     27                     67                      181  
            1000                   550                   550                    550                   550                    550(   ) (   ) (   ) (   ) (   ) (   )

Multiplying Adding many small numbers between 0 and 1 (fractions)
      Fewer problems with precision due to floating point operations

=
5

10
� 2

5
� 3

5
� 3

5
=

90

10 � 53log(             )2
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Naive Bayes with Numeric Attributes

Pr(yi | x) = Pr(yi | x1, …, xn) = Pr(yi)
n

∏
k=1

Pr(xk | yi)

• But what if the attributes  are not words (or, more generally speaking, categorical variables)?

• what if the attributes are numeric/continuous?

xk

Pr(yi = Snow | Temp = 20∘F, Humidity=60%)

• Recall the Naive Bayes “strategy" we discussed last time 
• it worked well in case each instance was described by categorial attributes 
• e.g., one possible word, one possible color of a car, etc.

We estimated this probability via counters:
• how many times does “inheritance” appear in SPAMs
• how many times does “millions” appear in SPAMs

Probability of SPAM given 
words “inheritance" and “millions"
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Naive Bayes with Numeric Attributes

We can still estimate this. 
Just count the percentage of instances 

that have the label "Snow"

Temperature can be any real number from, say, -20°F to 110°F
• Can we keep counters for how often each possible temperature occurs?
• No! There’s an infinite number of possible values…

= Pr(yi = Snow) Pr(Temp = 20∘F, | yi = Snow) Pr(Humidity=60% | yi = Snow)

• But what if the attributes  are not words (or, more generally speaking, categorical variables)?

• what if the attributes are numeric/continuous?

xk

Pr(yi = Snow | Temp = 20∘F, Humidity=60%)
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Naive Bayes with Numeric Attributes

= Pr(yi = Snow) Pr(Temp = 20∘F, | yi = Snow) Pr(Humidity=60% | yi = Snow)

• Two possible approaches: 

1. Discretize the continuous variable
• “Temperature" can be transformed into a categorial attribute

• Discretized_temperature=Cold if Temperature is from -20°F to 40°F
• Discretized_temperature=Mild  if Temperature is from  40°F to 70°F
• Discretized_temperature=Hot  if Temperature is from  70°F to 110°F 

2. Assume that the continuous variable comes from some distribution 
• e.g., that temperature values are distributed according to a Gaussian distribution
• use the training examples to find the parameters of such a distribution
• for example, the mean temperature and how much temperature varies (its standard deviation)

• But what if the attributes  are not words (or, more generally speaking, categorical variables)?

• what if the attributes are numeric/continuous?

xk

Pr(yi = Snow | Temp = 20∘F, Humidity=60%)
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Naive Bayes with Numeric Attributes

= Pr(yi = Snow) Pr(Temp = 20∘F, | yi = Snow) Pr(Humidity=60% | yi = Snow)

• Two possible approaches: 

1. Discretize the continuous variable
• “Temperature" can be transformed into a categorial attribute

• Discretized_temperature=Cold if Temperature is from -20°F to 40°F
• Discretized_temperature=Mild  if Temperature is from  40°F to 70°F
• Discretized_temperature=Hot  if Temperature is from  70°F to 110°F 

2. Assume that the continuous variable comes from some distribution 
• e.g., that temperature values are distributed according to a Gaussian distribution
• use the training examples to find the parameters of such a distribution
• for example, the mean temperatura and how much temperature varies (its standard deviation)

• But what if the attributes  are not words (or, more generally speaking, categorical variables)?

• what if the attributes are numeric/continuous?

xk

Pr(yi = Snow | Temp = 20∘F, Humidity=60%)
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Pr(yi = Snow | Temp=53∘F)

Temp ∼ 𝒩 (μTemp, σ2
Temp)

We can use the probability density function 
of a Gaussian distribution  

with mean  and standard deviation μ σ

= f (53; μTemp, Snow, σTemp, Snow)

Naive Bayes with Numeric Attributes

• Let’s assume that the continuous attribute, Temperature, is distributed according to a Gaussian

𝞼

𝞵

50°F

μTemp

σ2
Temp

Pr(Temp=53∘F) ?

f (x; μ, σ) =
1

2πσ2
e− (x − μ)2

2σ2Pr(Temp=x∘F) =

= Pr(yi = Snow) Pr(Temp=53∘F | yi = Snow)

Assume the temperature (when it is snowing)  
is modeled by a Gaussian distribution with:

• mean  

• standard deviation 

μTemp, Snow
σTemp, Snow

Pr(Temp=53∘F | yi = Snow)

= f (53; μTemp, Sunny, σTemp, Sunny)
Pr(Temp=53∘F | yi = Sunny)

Similarly,
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Pr(yi = Snow | Temp=53∘F)

Temp ∼ 𝒩 (μTemp, σ2
Temp)

We can use the probability density function 
of a Gaussian distribution  

with mean  and standard deviation μ σ

= f (53; μTemp, Snow, σTemp, Snow)

Naive Bayes with Numeric Attributes

• Let’s assume that the continuous attribute, Temperature, is distributed according to a Gaussian

𝞼

𝞵

50°F

μTemp

σ2
Temp

Pr(Temp=53∘F) ?

f (x; μ, σ) =
1

2πσ2
e− (x − μ)2

2σ2Pr(Temp=x∘F) =

= Pr(yi = Snow) Pr(Temp=53∘F | yi = Snow)

Assume the temperature (when it is snowing)  
is modeled by a Gaussian distribution with:

• mean  

• standard deviation 

μTemp, Snow
σTemp, Snow

Pr(Temp=53∘F | yi = Snow)

= f (53; μTemp, Sunny, σTemp, Sunny)
Pr(Temp=53∘F | yi = Sunny)

Similarly,
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Pr(yi = Snow | Temp=53∘F)

Temp ∼ 𝒩 (μTemp, σ2
Temp)

We can use the probability density function 
of a Gaussian distribution  

with mean  and standard deviation μ σ

= f (53; μTemp, Snow, σTemp, Snow)

Naive Bayes with Numeric Attributes

• Let’s assume that the continuous attribute, Temperature, is distributed according to a Gaussian

𝞼

𝞵

50°F

μTemp

σ2
Temp

Pr(Temp=53∘F) ?

f (x; μ, σ) =
1

2πσ2
e− (x − μ)2

2σ2Pr(Temp=x∘F) =

= Pr(yi = Snow) Pr(Temp=53∘F | yi = Snow)

Assume the temperature (when it is snowing)  
is modeled by a Gaussian distribution with:

• mean  

• standard deviation 

μTemp, Snow
σTemp, Snow

Pr(Temp=53∘F | yi = Snow)

= f (53; μTemp, Sunny, σTemp, Sunny)
Pr(Temp=53∘F | yi = Sunny)

Similarly,
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Pr(yi = Snow | Temp=53∘F)

Temp ∼ 𝒩 (μTemp, σ2
Temp)

We can use the probability density function 
of a Gaussian distribution  

with mean  and standard deviation μ σ

= f (53; μTemp, Snow, σTemp, Snow)

Naive Bayes with Numeric Attributes

• Let’s assume that the continuous attribute, Temperature, is distributed according to a Gaussian

𝞼

𝞵

50°F

μTemp

σ2
Temp

Pr(Temp=53∘F) ?

f (x; μ, σ) =
1

2πσ2
e− (x − μ)2

2σ2Pr(Temp=x∘F) =

= Pr(yi = Snow) Pr(Temp=53∘F | yi = Snow)

Assume the temperature (when it is snowing)  
is modeled by a Gaussian distribution with:

• mean  

• standard deviation 

μTemp, Snow
σTemp, Snow

Pr(Temp=53∘F | yi = Snow)

= f (53; μTemp, Sunny, σTemp, Sunny)
Pr(Temp=53∘F | yi = Sunny)

Similarly,

Bruno Castro da Silva
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Naive Bayes with Numeric Attributes

• Let’s assume that the continuous attribute, Temperature, is distributed according to a Gaussian

𝞼

𝞵

25°F

μTemp,Snow

σ2
Temp,Snow

μTemp,Sunny

σ2
Temp,Sunny

60°F

Notice that the distribution of temperatures  
might be different depending on the class 

(i.e., whether it is Snowing or Sunny)

Pr(Temp=53∘F | yi = Sunny)

Pr(Temp=53∘F | yi = Snow)
So to be able to compute

and

𝞵Temp, Snow

𝞼Temp, Snow

𝞵Temp, Sunny

𝞼Temp, Sunny

we need to estimate 
the parameters of 
both distributions
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Naive Bayes with Numeric Attributes

• Let’s assume that the continuous attribute, Temperature, is distributed according to a Gaussian

𝞼

𝞵

25°F

μTemp,Snow

σ2
Temp,Snow

μTemp,Sunny

σ2
Temp,Sunny

60°F

Notice that the distribution of temperatures  
might be different depending on the class 

(i.e., whether it is Snowing or Sunny)

Pr(Temp=53∘F | yi = Sunny)

Pr(Temp=53∘F | yi = Snow)
So to be able to compute

and

𝞵Temp, Snow

𝞼Temp, Snow

𝞵Temp, Sunny

𝞼Temp, Sunny

we need to estimate 
the parameters of 
both distributions
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Naive Bayes with Numeric Attributes

μTemp,Sunny

σ2
Temp,Sunny

60°F

𝞵Temp, Snow

𝞼Temp, Snow

𝞵Temp, Sunny

𝞼Temp, Sunny

we need to estimate 
the parameters of 
both distributions

Instance Temp Class

#1 20 Snow

#2 57 Sunny

#3 63 Sunny

#4 15 Snow

#5 25 Snow

𝞵Temp, Snow = (20+15+25)/3 = 20

𝞼Temp, Snow = 5

𝞵Temp, Sunny = (57,63)/2 = 60
𝞼Temp, Snow = 4.24

𝞼

𝞵

25°F

μTemp,Snow

σ2
Temp,Snow
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Naive Bayes with Numeric Attributes

𝞵Temp, Snow = (20+15+25)/3 = 20

𝞼Temp, Snow = 5
𝞵Temp, Sunny = (57,63)/2 = 60
𝞼Temp, Snow = 4.24

μTemp,Sunny

σ2
Temp,Sunny

60°F

f( 18; 𝞵Temp, Snow , 𝞼Temp, Snow) = 0.073Pr(Temp=18∘F | yi = Snow) =

f (x; μ, σ) =
1

2πσ2
e− (x − μ)2

2σ2

f( 61; 𝞵Temp, Sunny , 𝞼Temp, Sunny) = 0.091Pr(Temp=61∘F | yi = Sunny) =

where

𝞼

𝞵

25°F

μTemp,Snow

σ2
Temp,Snow
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