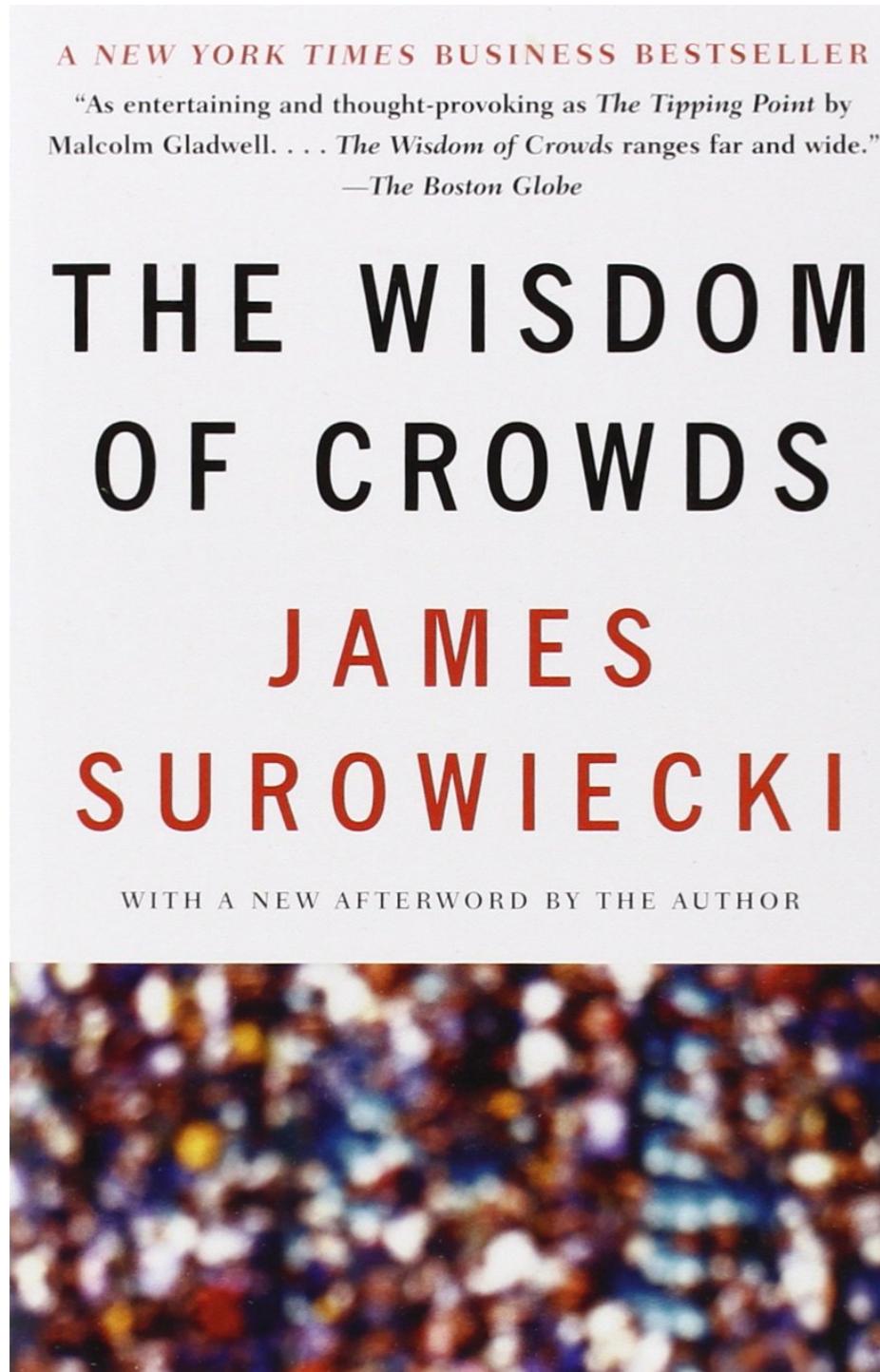


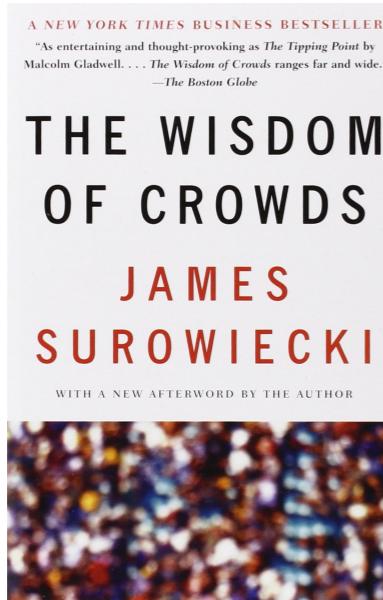
Lecture 7: Ensemble Methods

Wisdom of Crowds



- Knowledge that emerges from a collective decision
- Often better/“more accurate” than that provided by any one individual person
 - Even (individual) experts!

Wisdom of Crowds

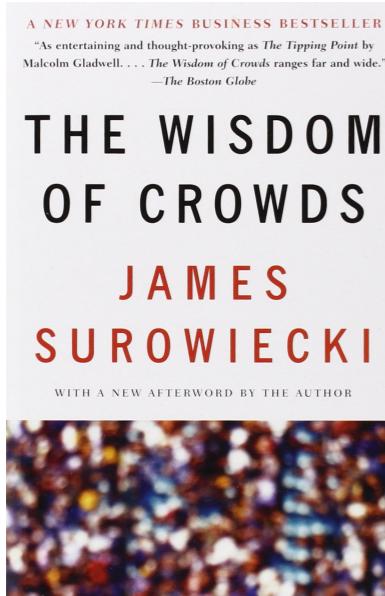


- Knowledge that emerges from a collective decision
- Often better/“more accurate” than that provided by any one individual person
 - Even (individual) experts!

Four conditions:

1. Diversity of opinion
 - Each person should have private information
2. Independence
 - People's opinions are not always determined by the opinions of those around them
3. Decentralization
 - No one at the top dictates crowd's answer. People specialize and draw on local knowledge
4. Aggregation
 - Some mechanism exists for turning private judgements into a collective decision

Wisdom of Crowds



Four conditions:

1. **Diversity of opinion**
Each person should have private information
2. **Independence**
People's opinions are not always determined by the opinions of those around them
3. **Decentralization**
No one at the top dictates crowd's answer. People specialize and draw on local knowledge
4. **Aggregation**
Some mechanism exists for turning private judgements into a collective decision

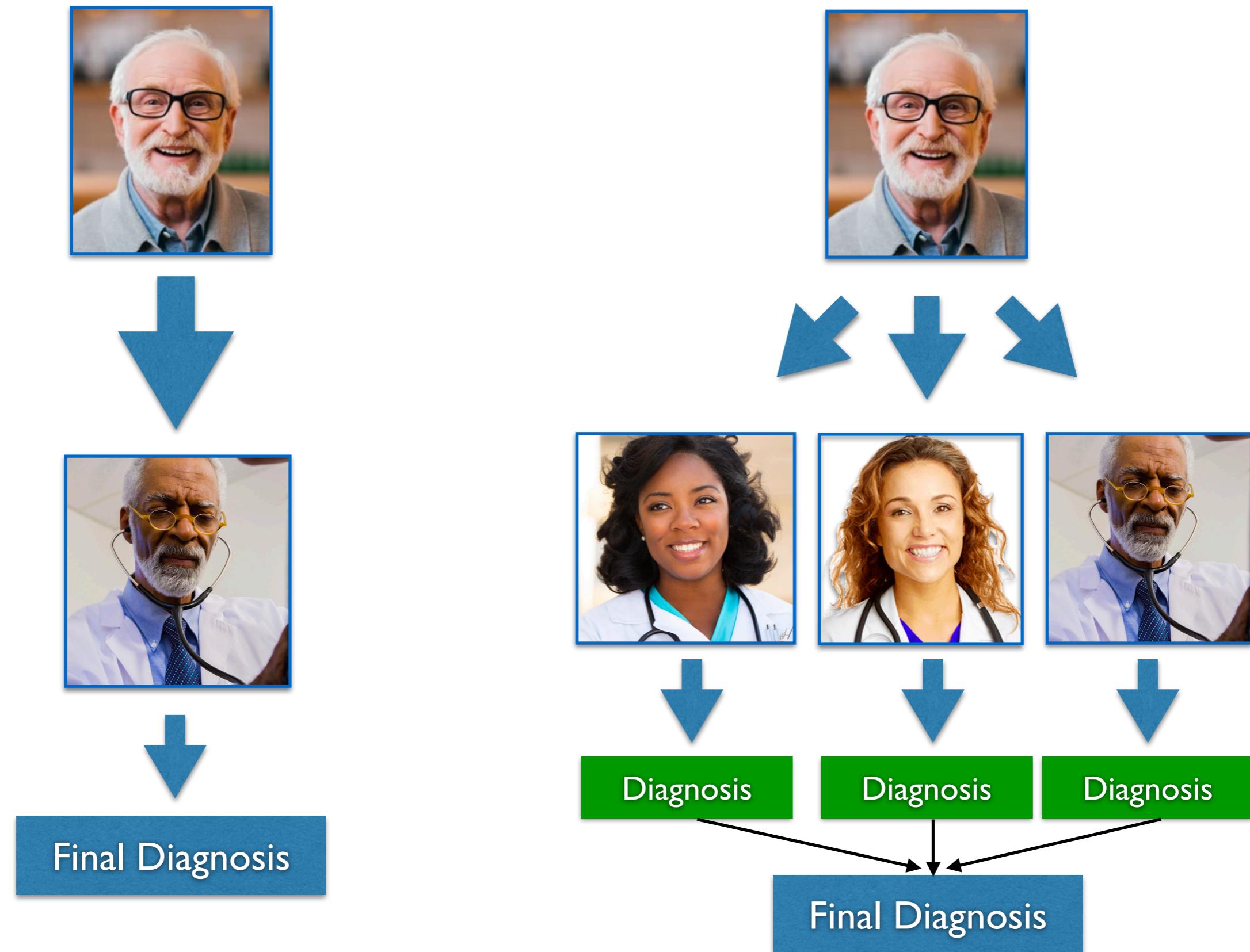
- **Intuitively, in machine learning:**
 - Many models/algorithms
 - Trained independently based on different information/data

Wisdom of Crowds

- The **Jelly Beans in a Jar** experiment
 - Michael Mauboussin — 73 Columbia Business School students
 - *“Just by looking at the jar, can you guess how many jelly beans are there?”*
 - The jar contained 1116 jelly beans
 - Students would guess anywhere from 250 to 4100
 - Average error made by each student: 700 (62%)

Average of all 73 guesses: **1151 (3% error)**

Wisdom of Crowds

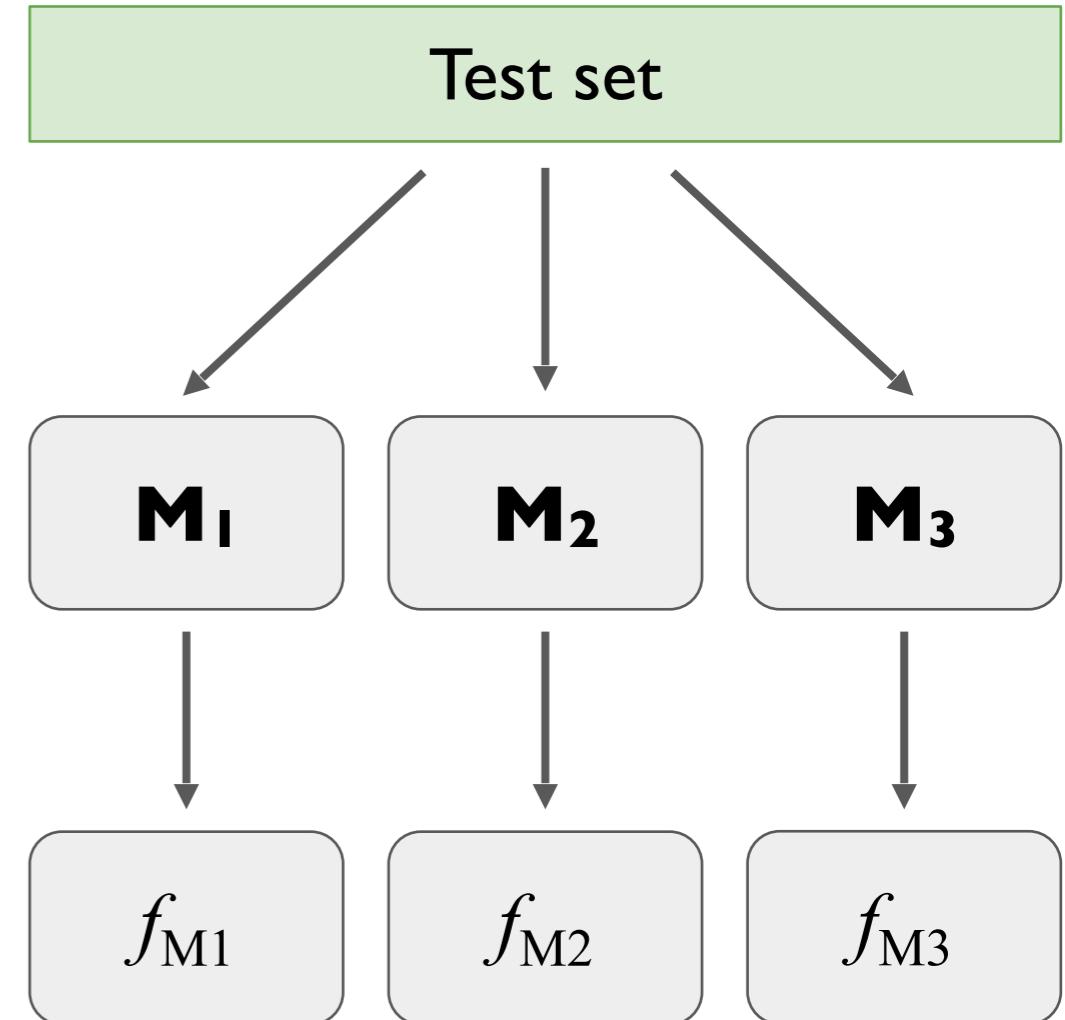


Multiple Models in ML

Training set

\mathbf{x}_k	y_k
\mathbf{x}_1	1
\mathbf{x}_2	1
\mathbf{x}_3	1
\mathbf{x}_4	1
\mathbf{x}_5	1
\mathbf{x}_6	1
\mathbf{x}_7	1
\mathbf{x}_8	1
\mathbf{x}_9	1
\mathbf{x}_{10}	1

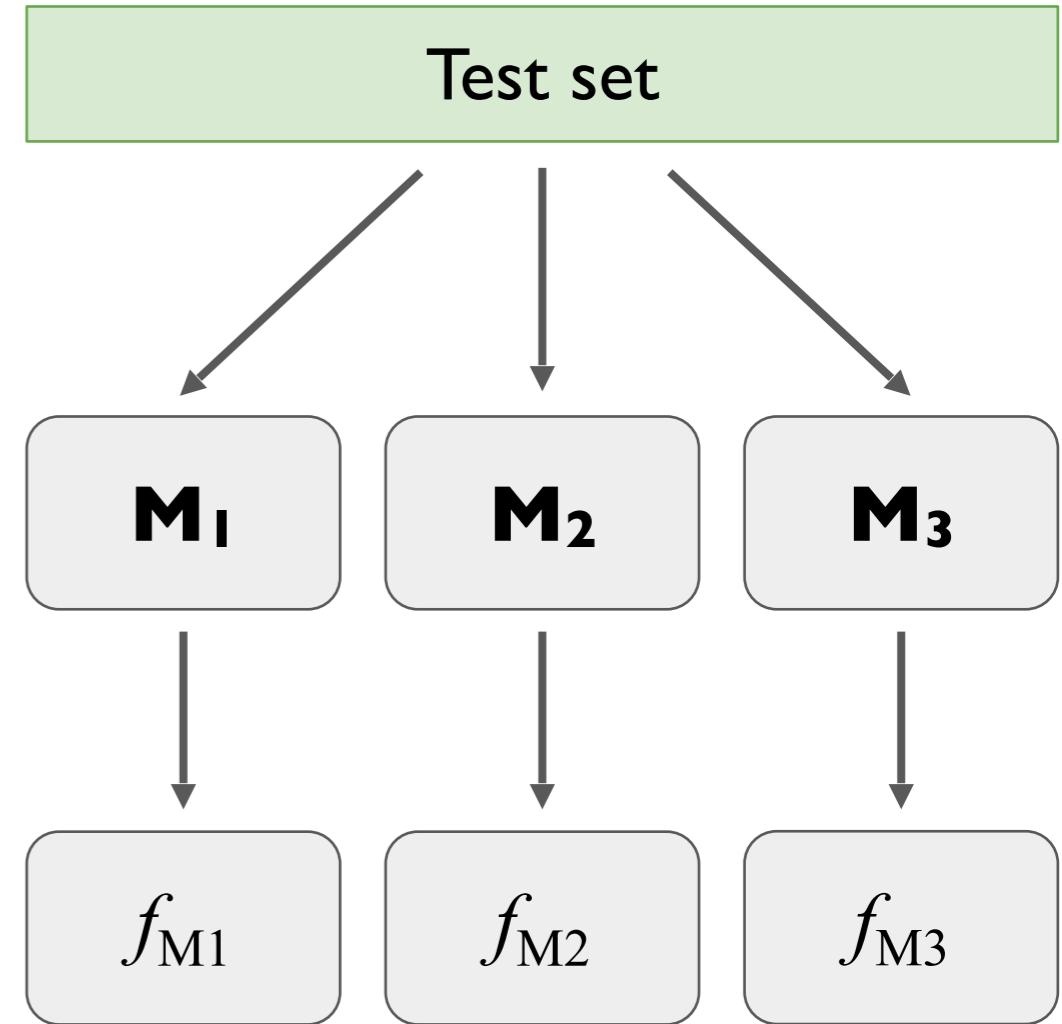
Accuracy



Multiple Models in ML

Predictions made by different models
(M_1, M_2, M_3)

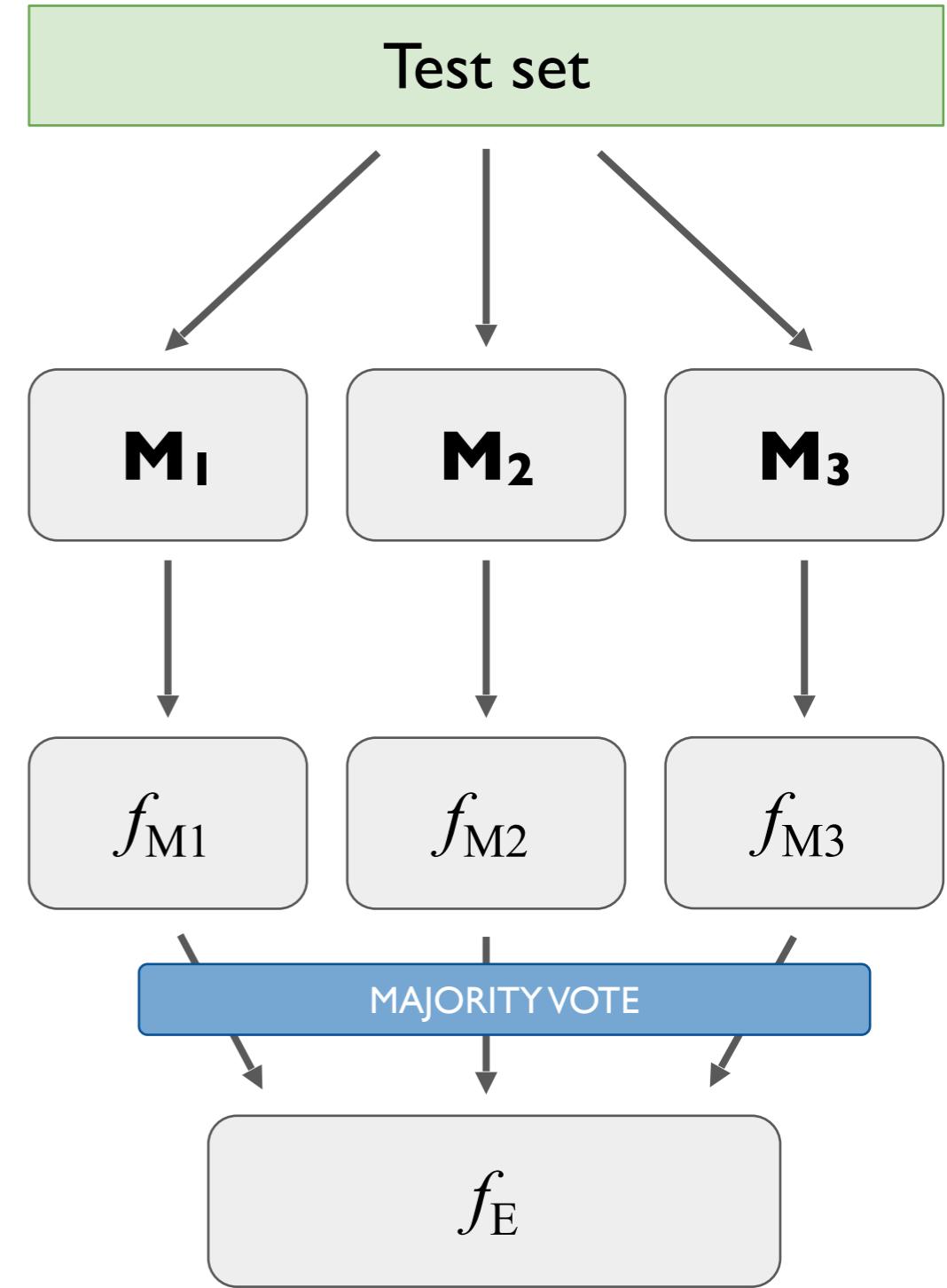
x_k	y_k	f_{M1}	f_{M2}	f_{M3}
x_1	1	1	1	1
x_2	1	1	0	1
x_3	1	0	1	1
x_4	1	1	1	1
x_5	1	1	1	1
x_6	1	1	1	0
x_7	1	0	0	0
x_8	1	1	1	0
x_9	1	1	0	1
x_{10}	1	0	1	1
Accuracy	70%	70%	70%	70%



Multiple Models in ML

Combined model (via majority voting)

\mathbf{x}_k	\mathbf{y}_k	f_{M1}	f_{M2}	f_{M3}	f_E
\mathbf{x}_1	1	1	1	1	1
\mathbf{x}_2	1	1	0	1	1
\mathbf{x}_3	1	0	1	1	1
\mathbf{x}_4	1	1	1	1	1
\mathbf{x}_5	1	1	1	1	1
\mathbf{x}_6	1	1	1	0	1
\mathbf{x}_7	1	0	0	0	0
\mathbf{x}_8	1	1	1	0	1
\mathbf{x}_9	1	1	0	1	1
\mathbf{x}_{10}	1	0	1	1	1
Accuracy		70%	70%	70%	90%



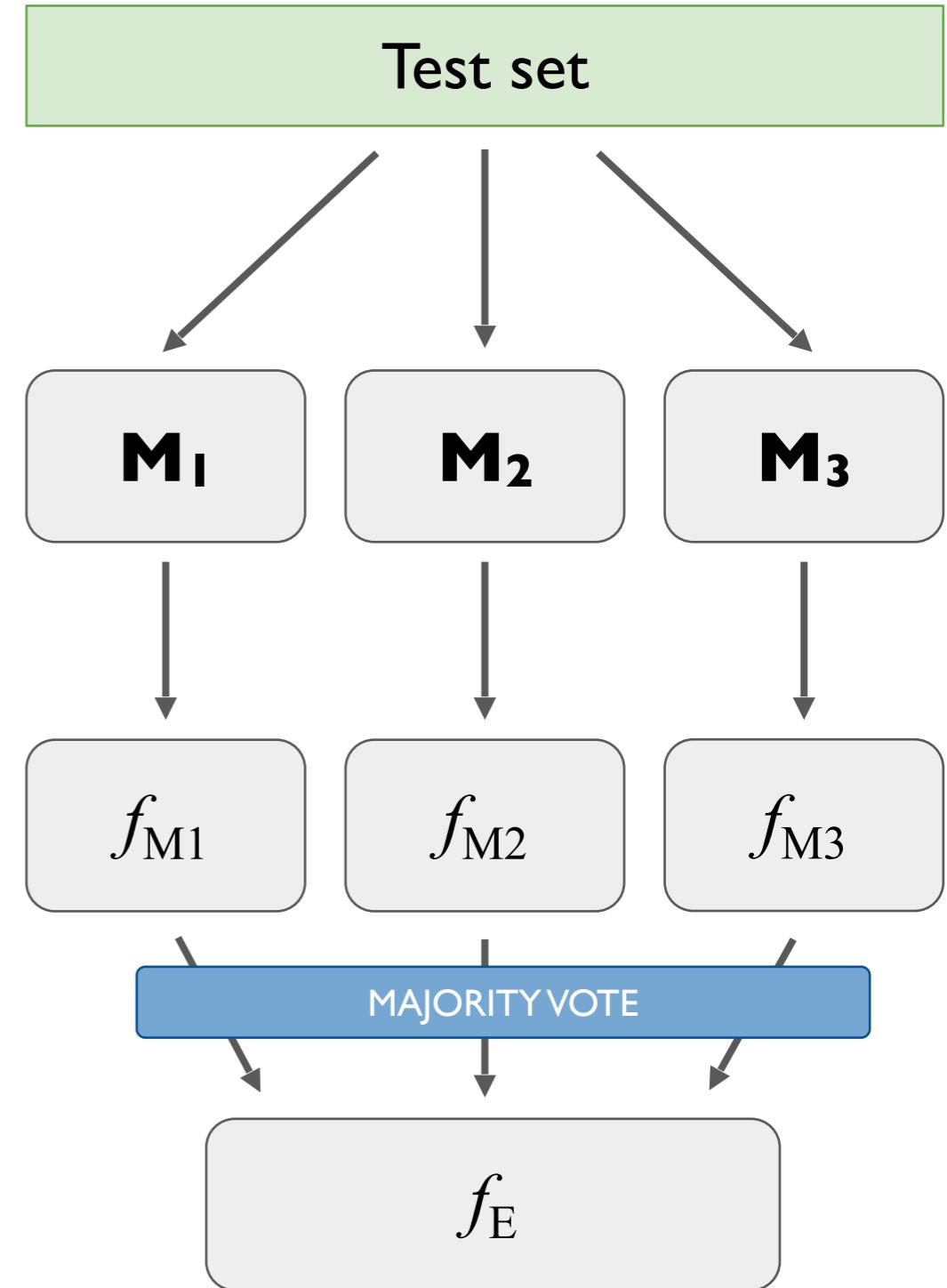
Multiple Models in ML

Combined model (via majority voting)

\mathbf{x}_k	\mathbf{y}_k	f_{M1}	f_{M2}	f_{M3}	f_E
\mathbf{x}_1	1	1	1	1	1
\mathbf{x}_2	1	1	0	1	1
\mathbf{x}_3	1	0	1	1	1

The “consensus” resulting from combining each model’s predictions tends to have higher accuracy than each individual classifier

\mathbf{x}_8	1	1	1	0	f_E
\mathbf{x}_9	1	1	0	1	1
\mathbf{x}_{10}	1	0	1	1	1
Accuracy	70%	70%	70%	70%	90%

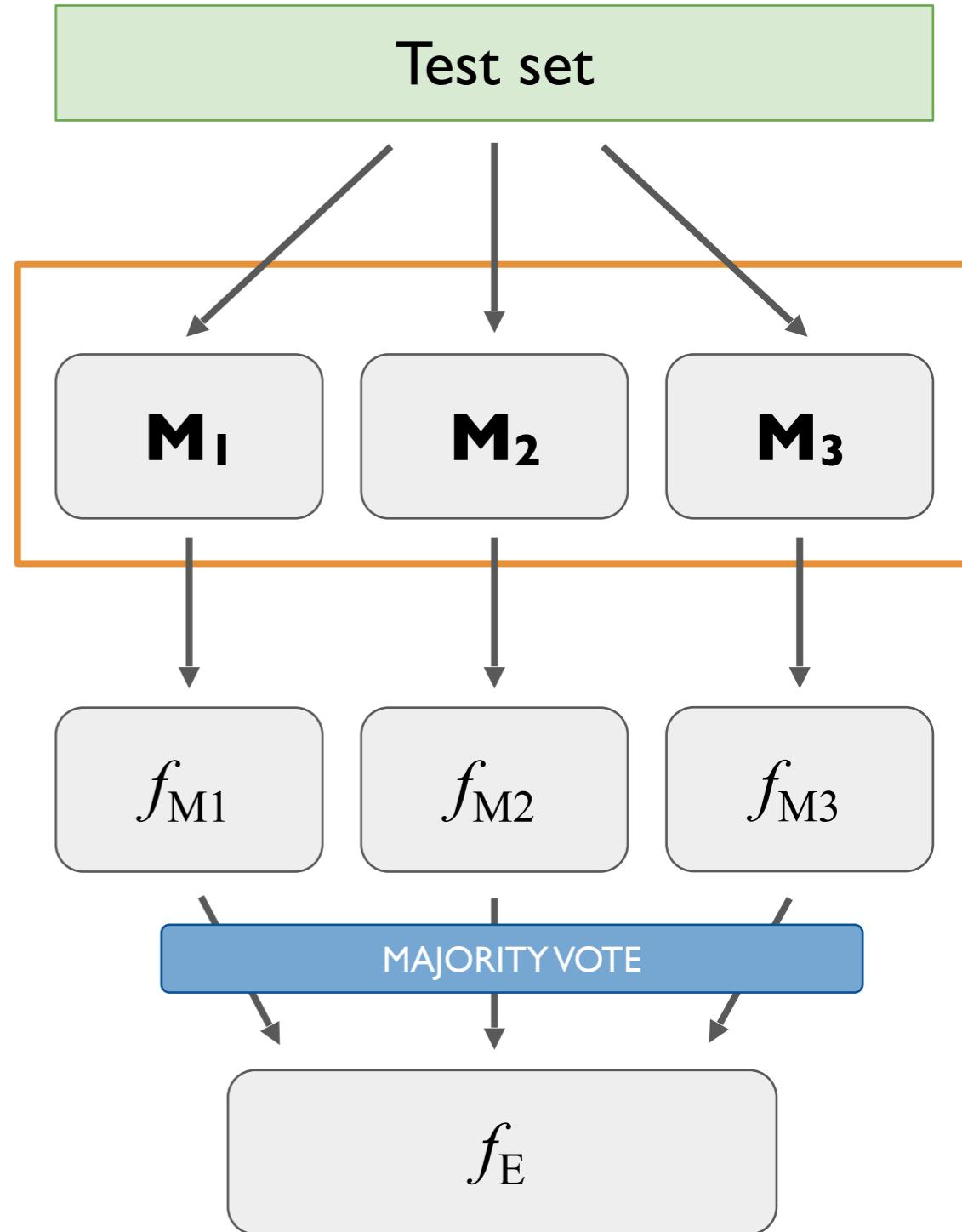


Multiple Models in ML

“The ensemble consensus tends to have higher accuracy than that of its individual classifiers”

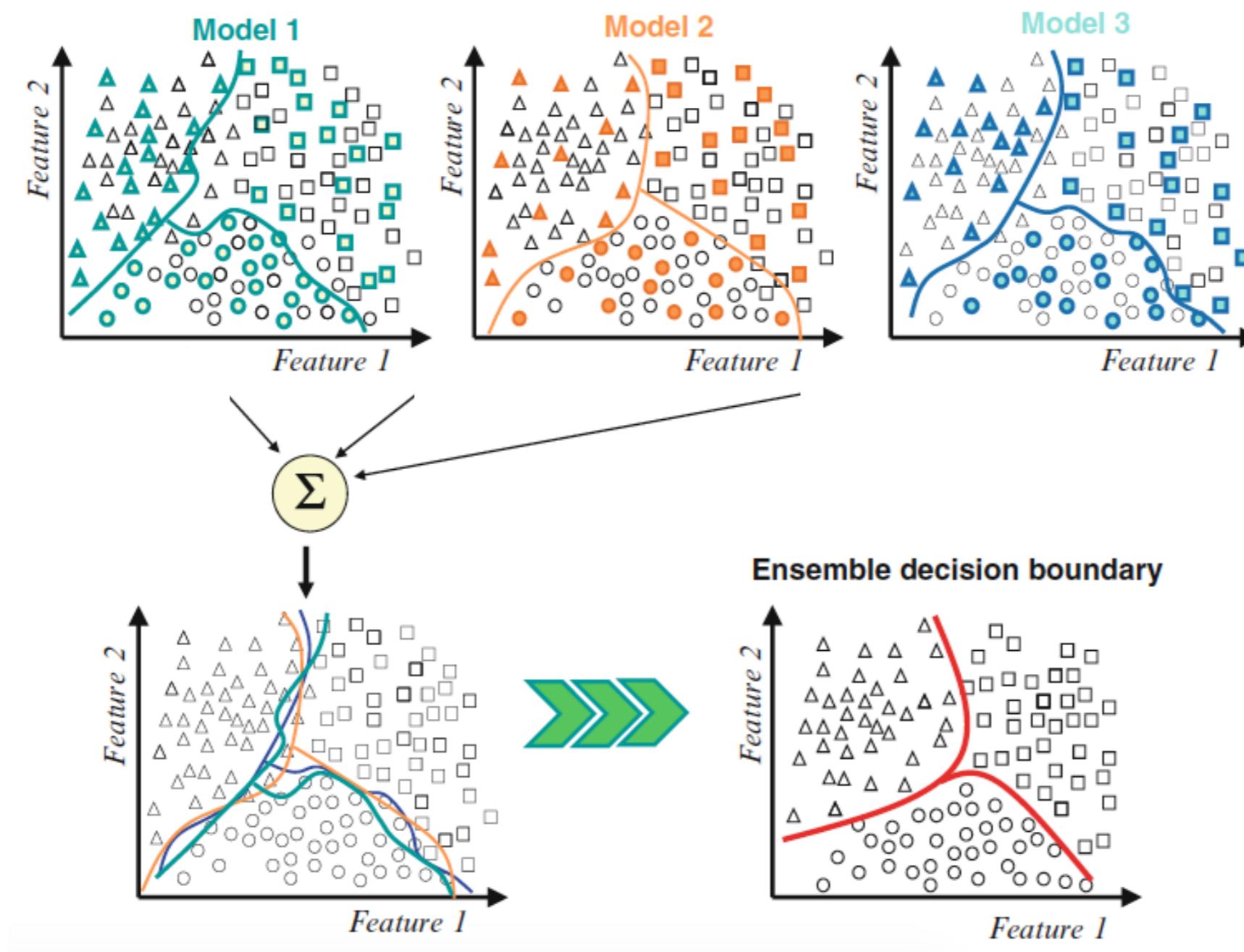
Conditions for ensembles to perform well:
“accuracy and diversity”

- **Error rate** of individual classifiers < 50%
- **Errors made by classifiers are independent**
- Under these conditions:
 - if classifiers have similar error rate (e.g., 45%)
 - the expected error rate of the ensemble decreases linearly with the number of models

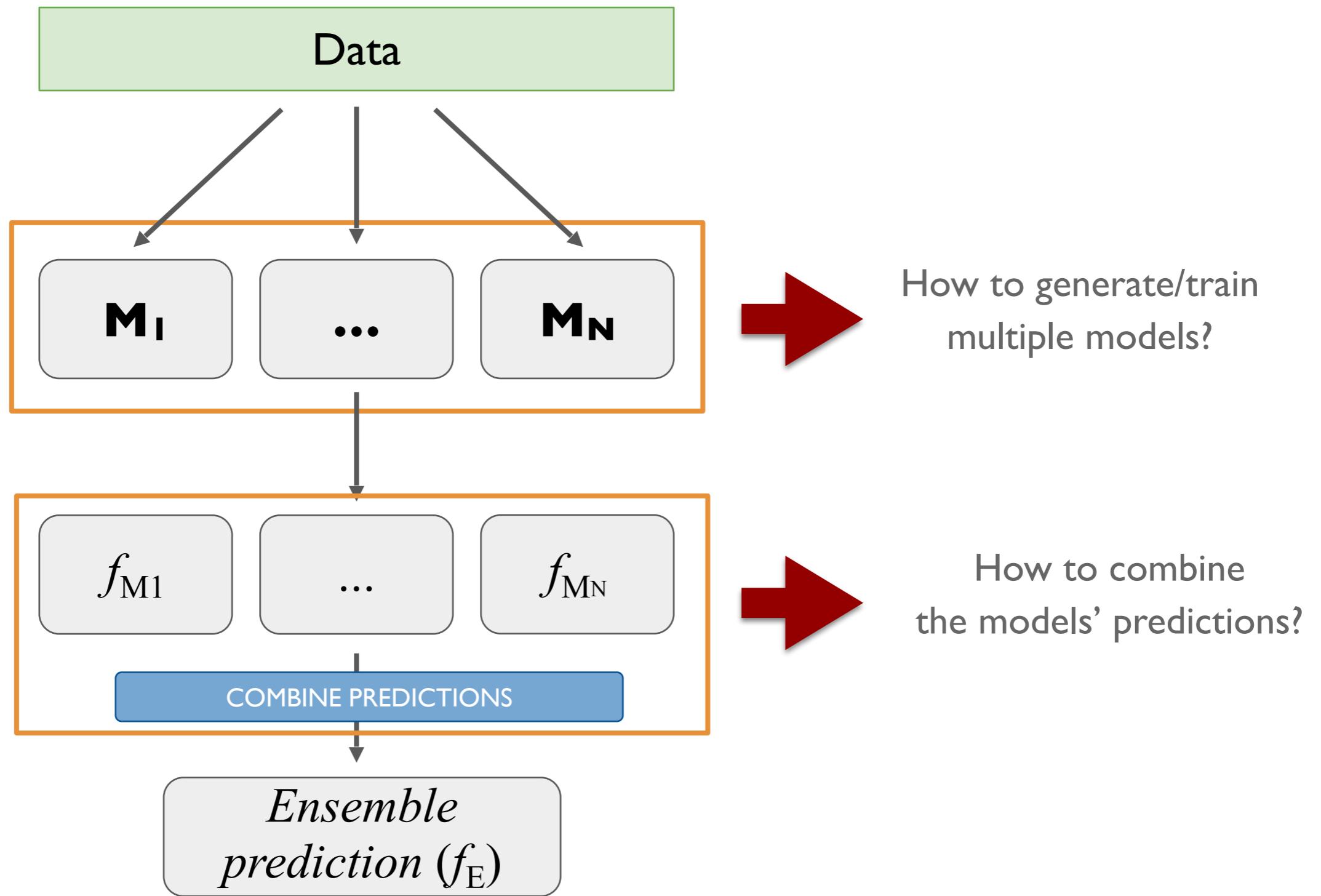


Ensemble Learning

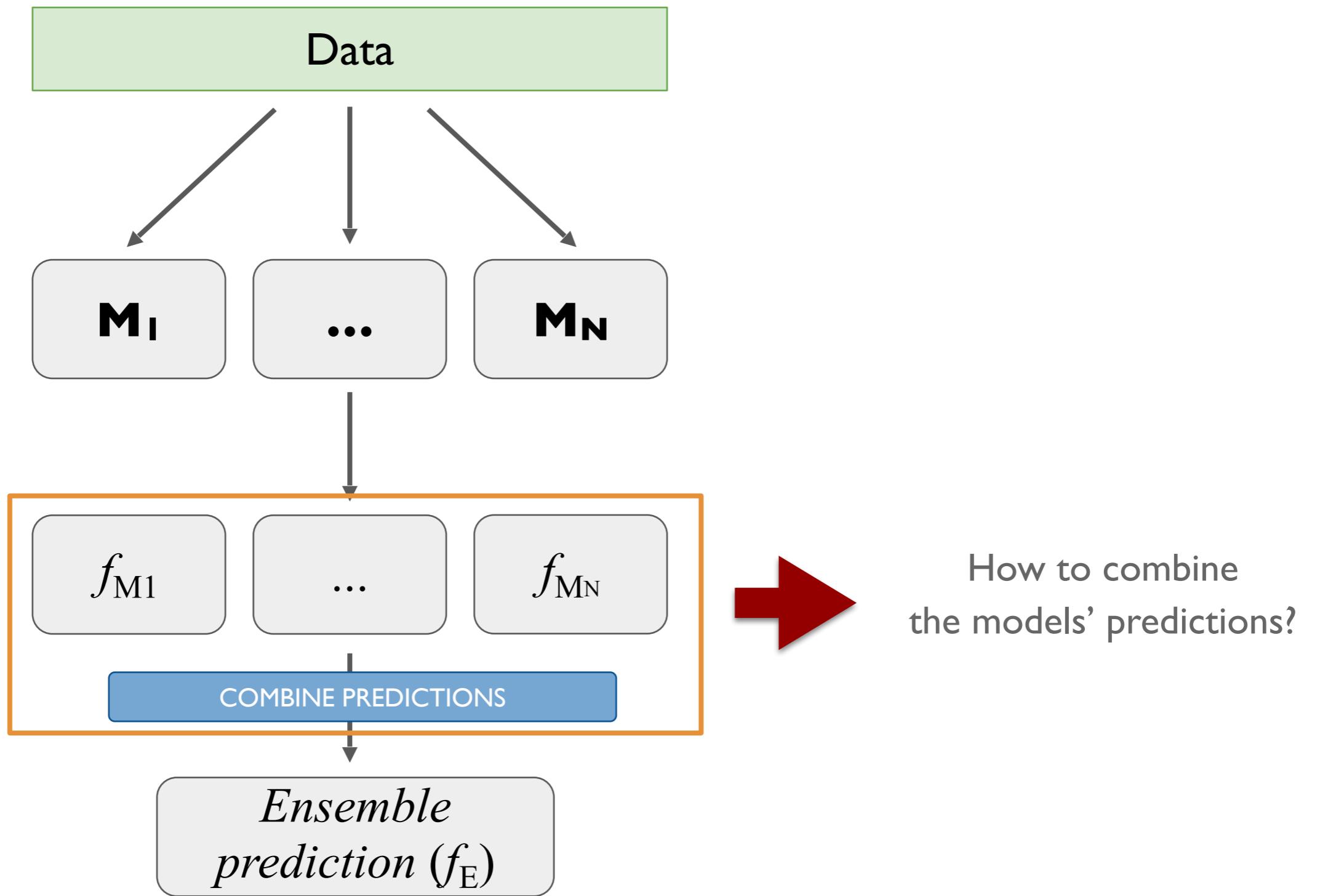
How is the decision boundary of the combined model influenced by the use of multiple models?



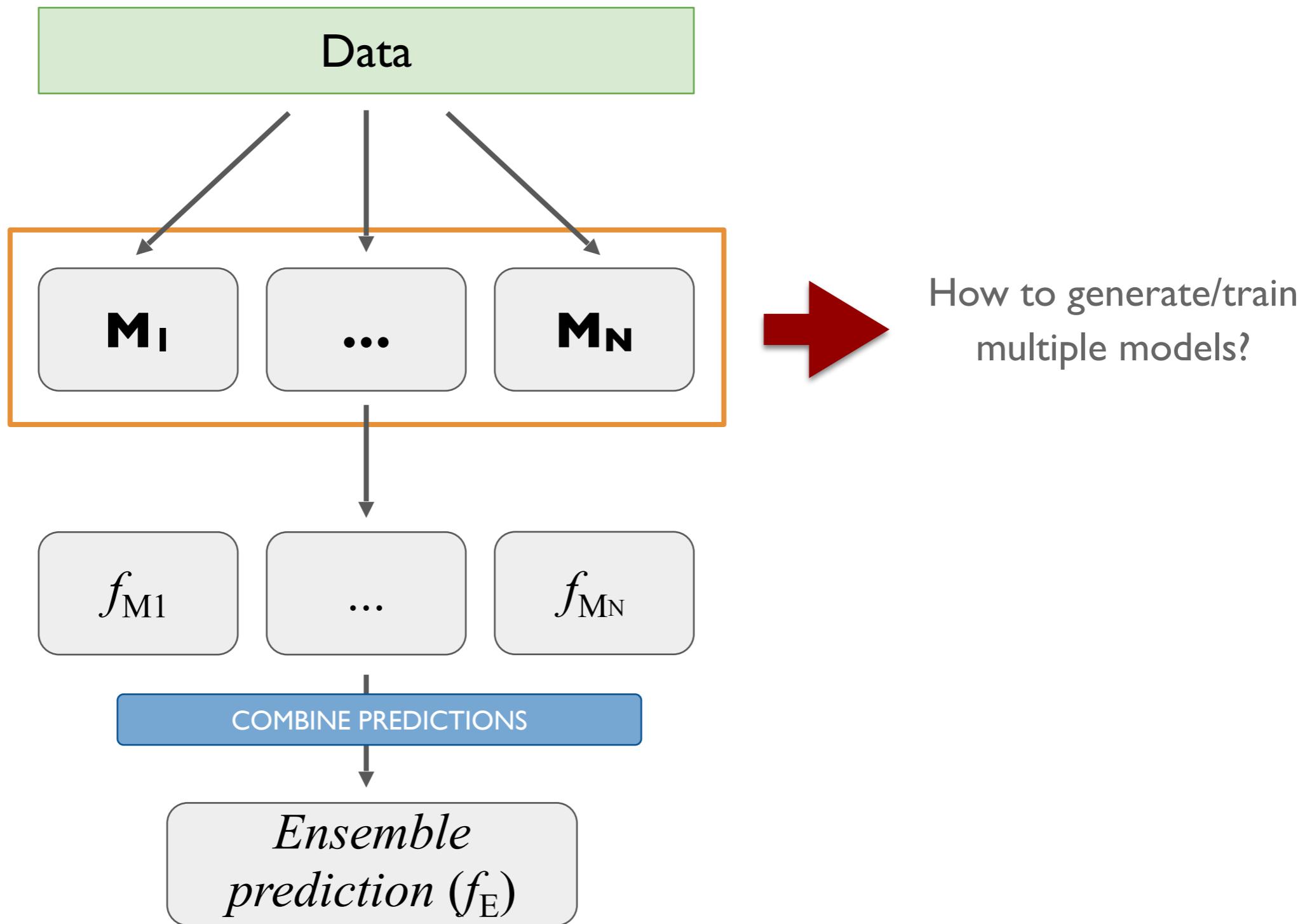
Multiple Models in ML



Multiple Models in ML



Multiple Models in ML

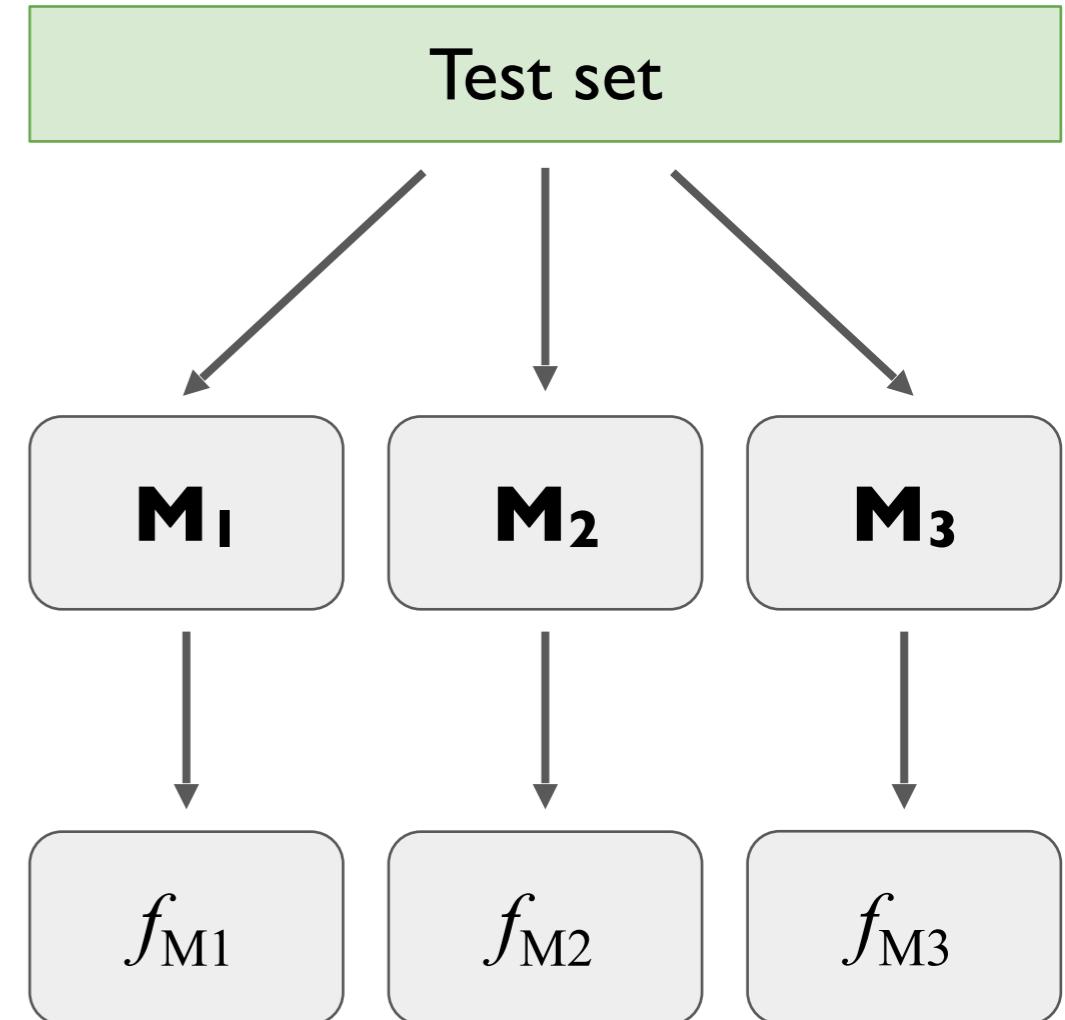


Multiple Models in ML

Training set

\mathbf{x}_k	y_k
\mathbf{x}_1	1
\mathbf{x}_2	1
\mathbf{x}_3	1
\mathbf{x}_4	1
\mathbf{x}_5	1
\mathbf{x}_6	1
\mathbf{x}_7	1
\mathbf{x}_8	1
\mathbf{x}_9	1
\mathbf{x}_{10}	1

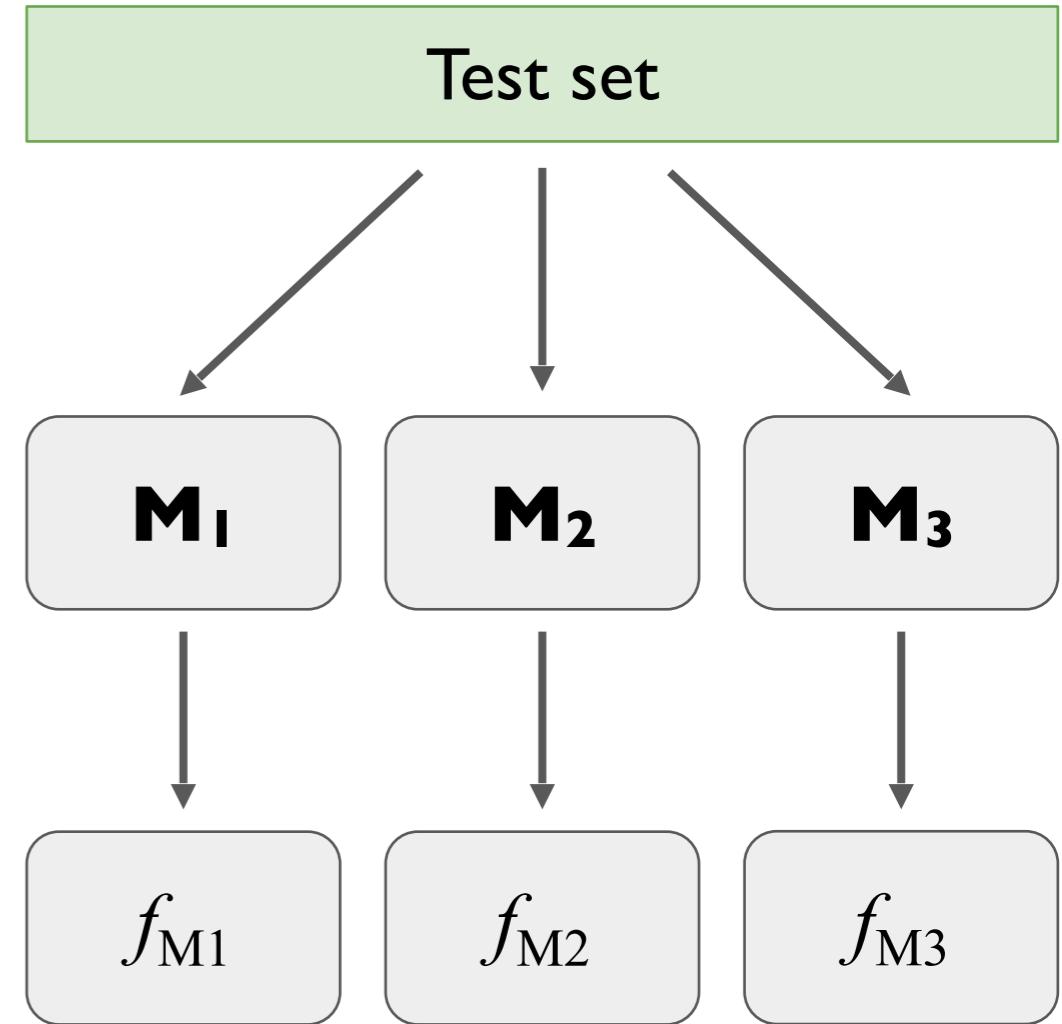
Accuracy



Multiple Models in ML

Predictions made by different models
(M_1, M_2, M_3)

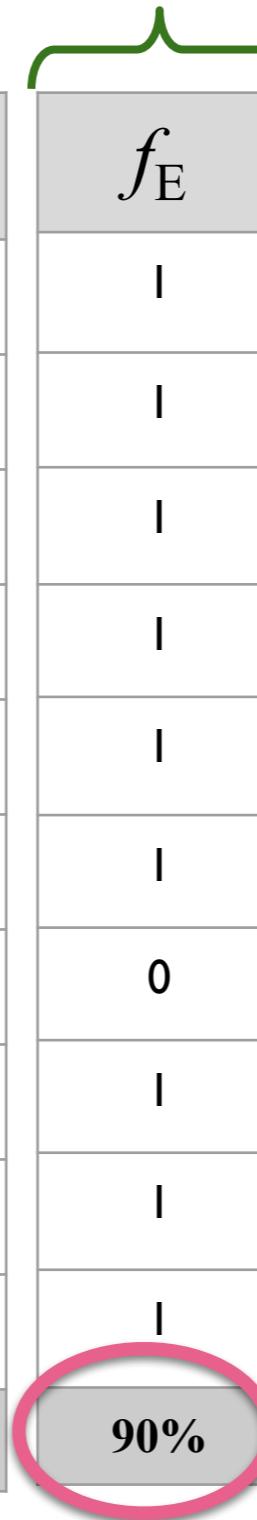
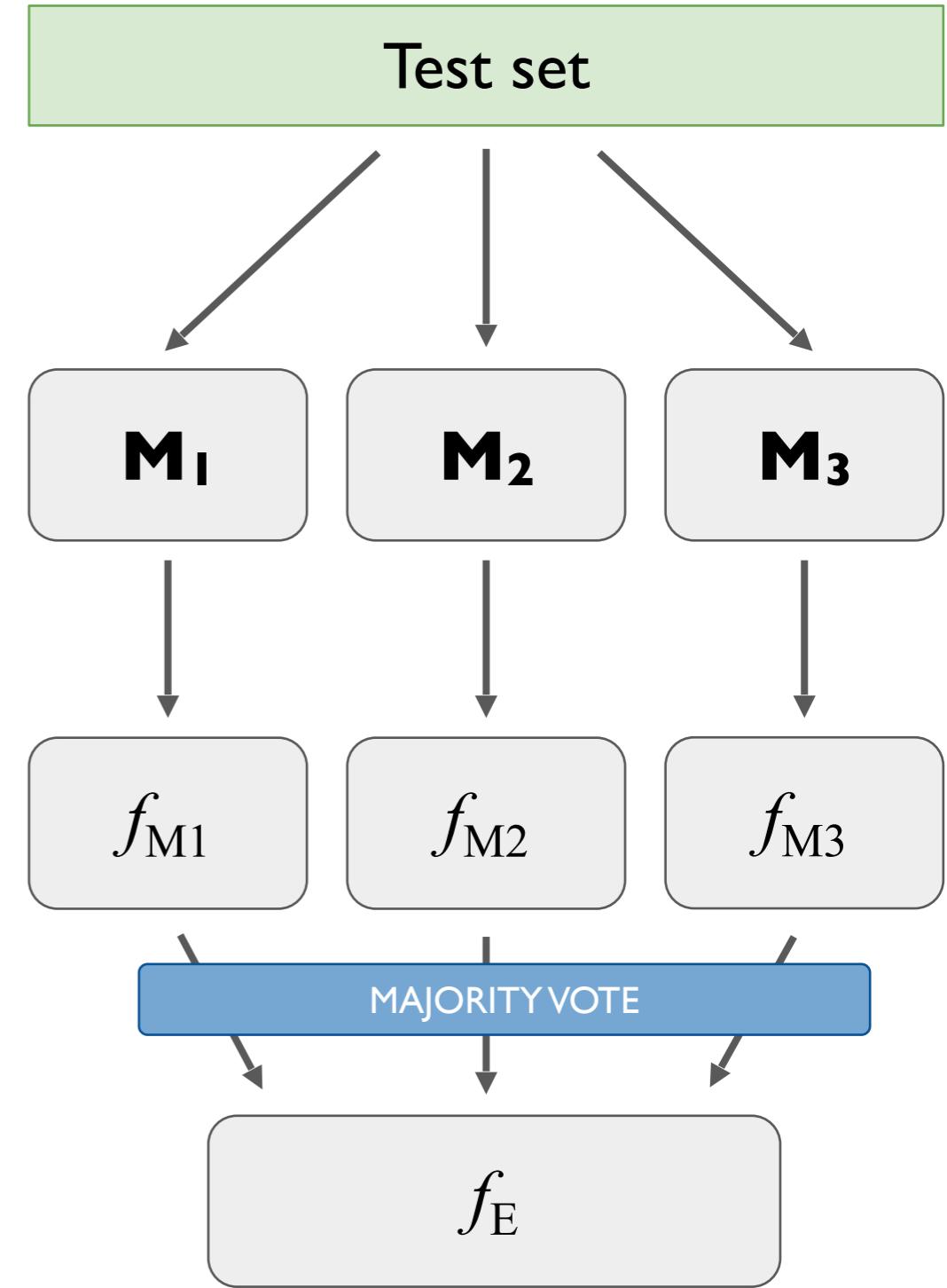
x_k	y_k	f_{M1}	f_{M2}	f_{M3}
x_1	1	1	1	1
x_2	1	1	0	1
x_3	1	0	1	1
x_4	1	1	1	1
x_5	1	1	1	1
x_6	1	1	1	0
x_7	1	0	0	0
x_8	1	1	1	0
x_9	1	1	0	1
x_{10}	1	0	1	1
Accuracy	70%	70%	70%	70%



Multiple Models in ML

Combined model (via majority voting)

\mathbf{x}_k	\mathbf{y}_k	f_{M1}	f_{M2}	f_{M3}
\mathbf{x}_1	1	1	1	1
\mathbf{x}_2	1	1	0	1
\mathbf{x}_3	1	0	1	1
\mathbf{x}_4	1	1	1	1
\mathbf{x}_5	1	1	1	1
\mathbf{x}_6	1	1	1	0
\mathbf{x}_7	1	0	0	0
\mathbf{x}_8	1	1	1	0
\mathbf{x}_9	1	1	0	1
\mathbf{x}_{10}	1	0	1	1
Accuracy	70%	70%	70%	90%



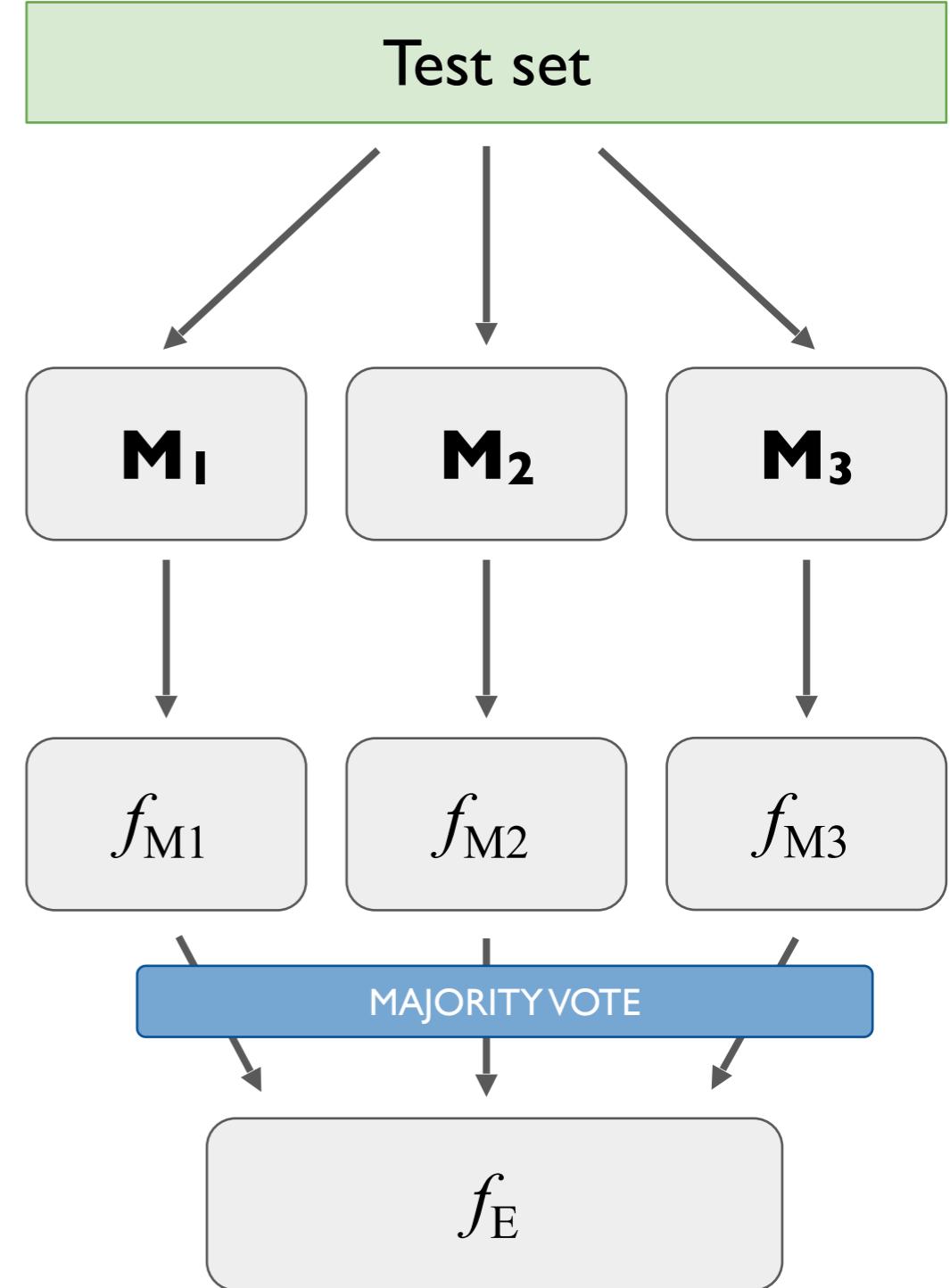
Multiple Models in ML

Combined model (via majority voting)

\mathbf{x}_k	\mathbf{y}_k	f_{M1}	f_{M2}	f_{M3}	f_E
\mathbf{x}_1	1	1	1	1	1
\mathbf{x}_2	1	1	0	1	1
\mathbf{x}_3	1	0	1	1	1

The “consensus” resulting from combining each model’s predictions tends to have higher accuracy than each individual classifier

\mathbf{x}_8	1	1	1	0	f_E
\mathbf{x}_9	1	1	0	1	1
\mathbf{x}_{10}	1	0	1	1	1
Accuracy	70%	70%	70%	70%	90%

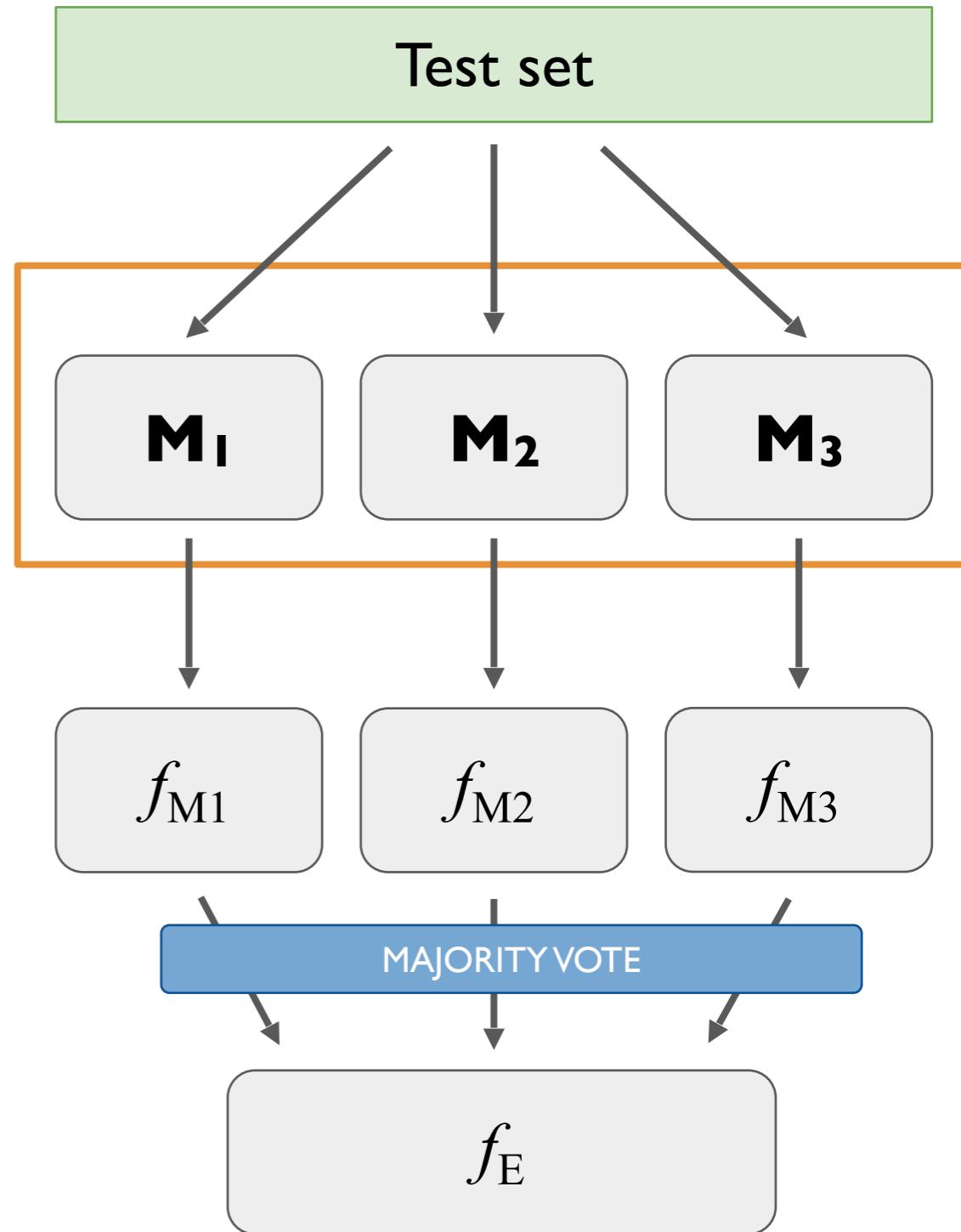


Multiple Models in ML

“The ensemble consensus tends to have higher accuracy than that of its individual classifiers”

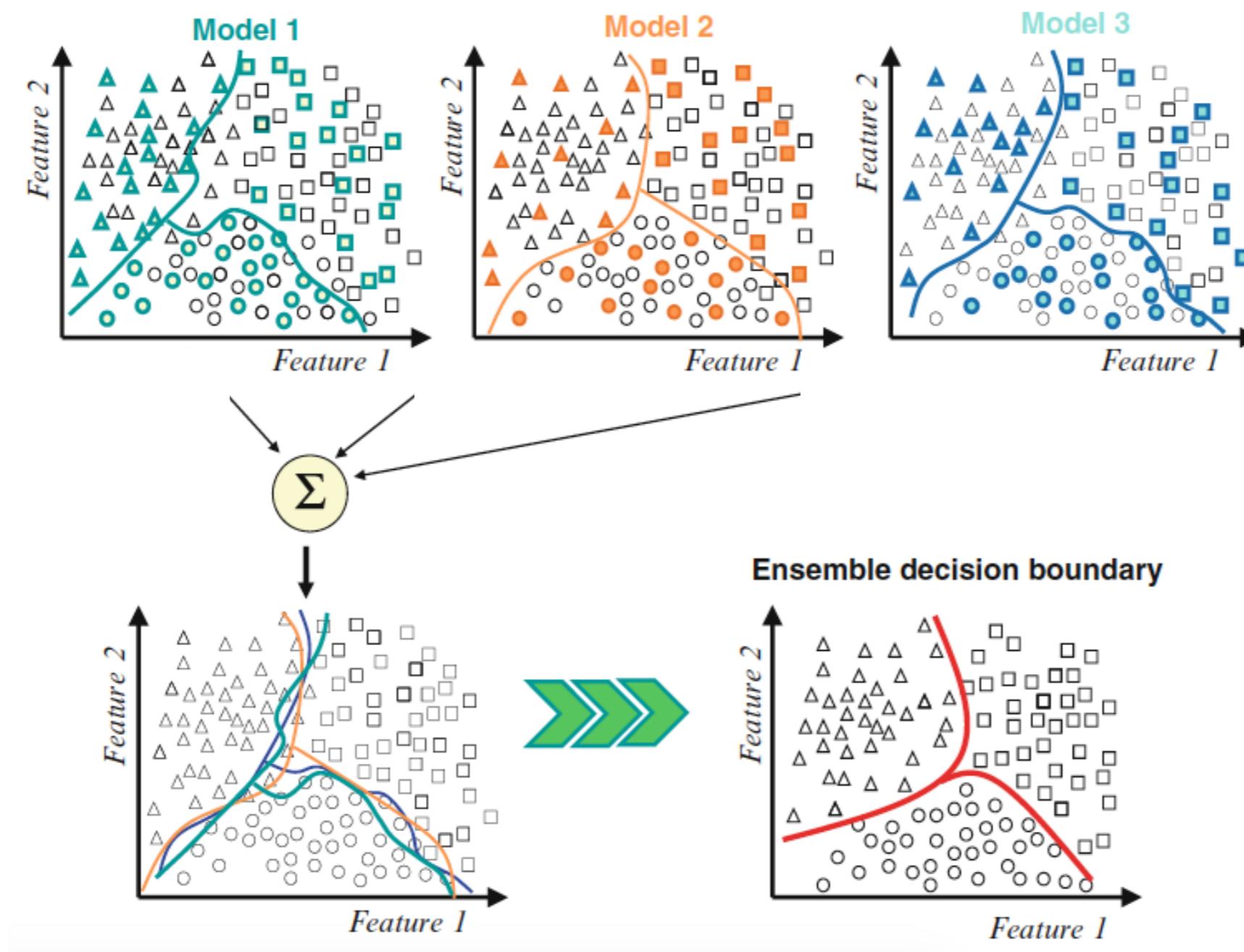
Conditions for ensembles to perform well:
“accuracy and diversity”

- **Error rate** of individual classifiers < 50%
- **Errors made by classifiers are independent**
- Under these conditions:
 - if classifiers have similar error rate (e.g., 45%)
 - the expected error rate of the ensemble decreases linearly with the number of models

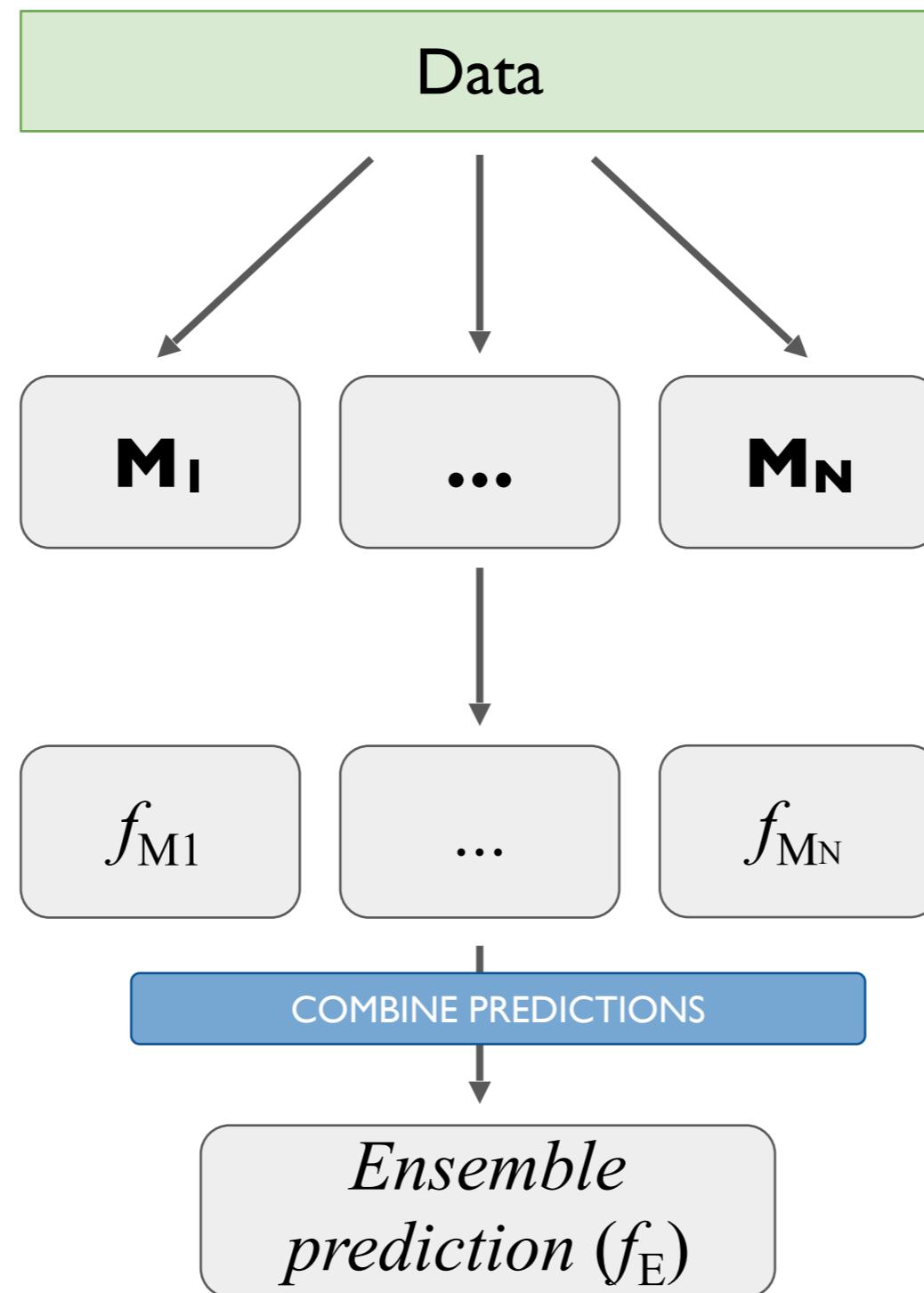


Ensemble Learning

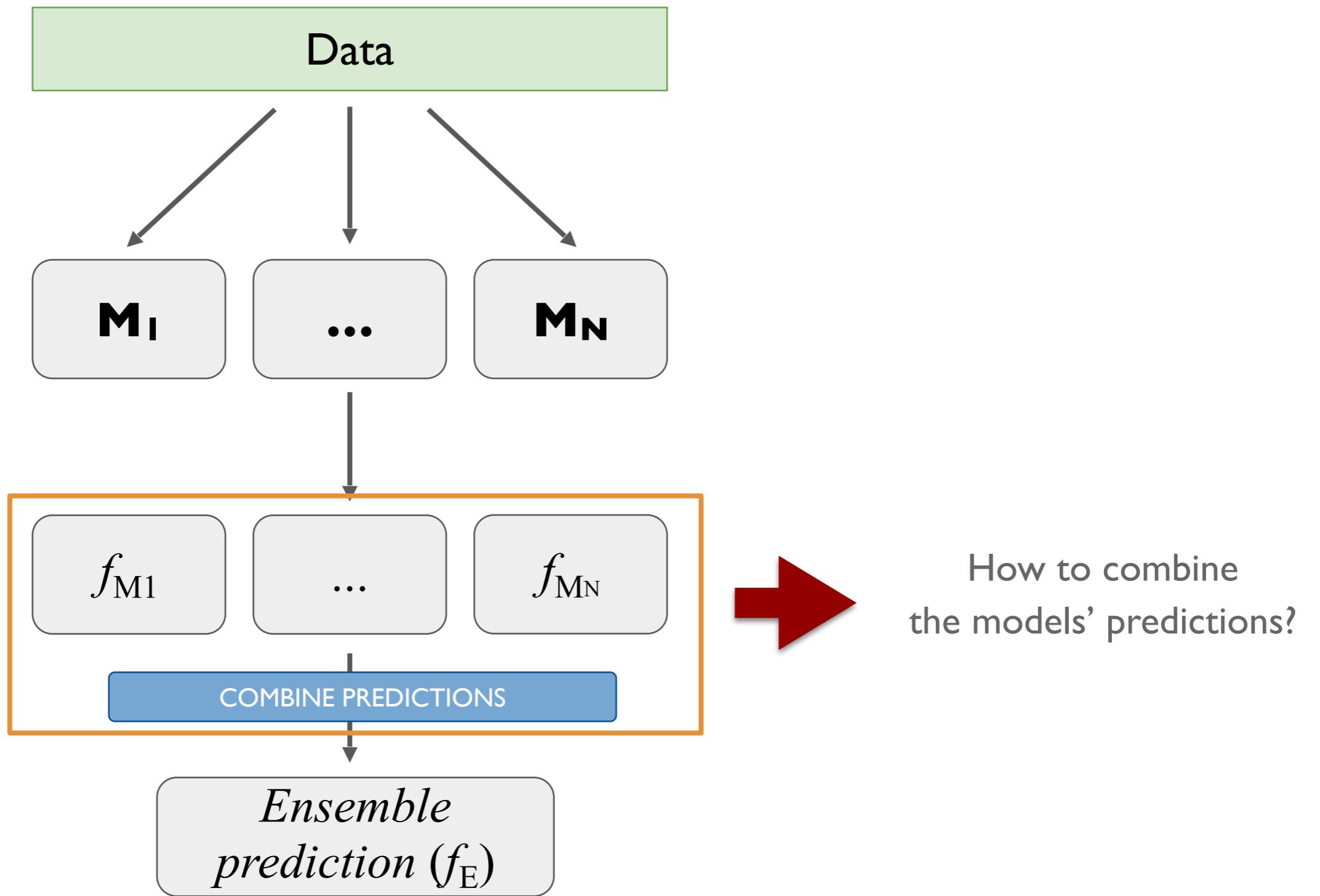
How is the decision boundary of the combined model influenced by the use of multiple models?



Multiple Models in ML



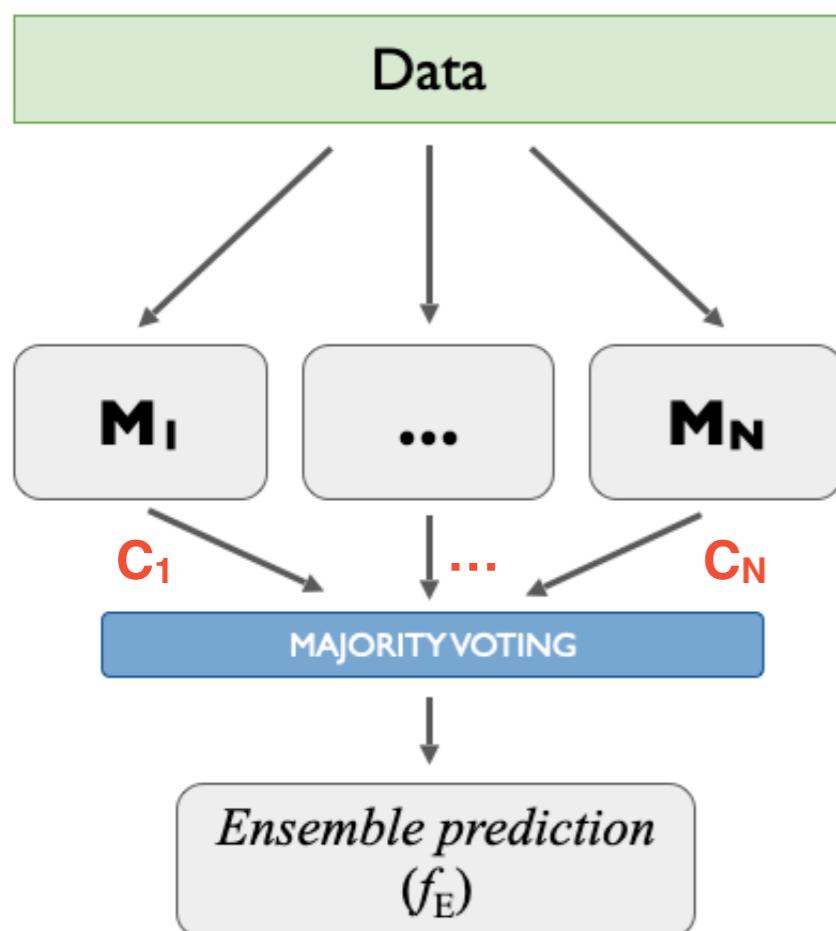
Multiple Models in ML



Combining Models' Predictions

Voting methods vs. Averaging methods

Based on the type of data being predicted
discrete values (or classes) vs. continuous values



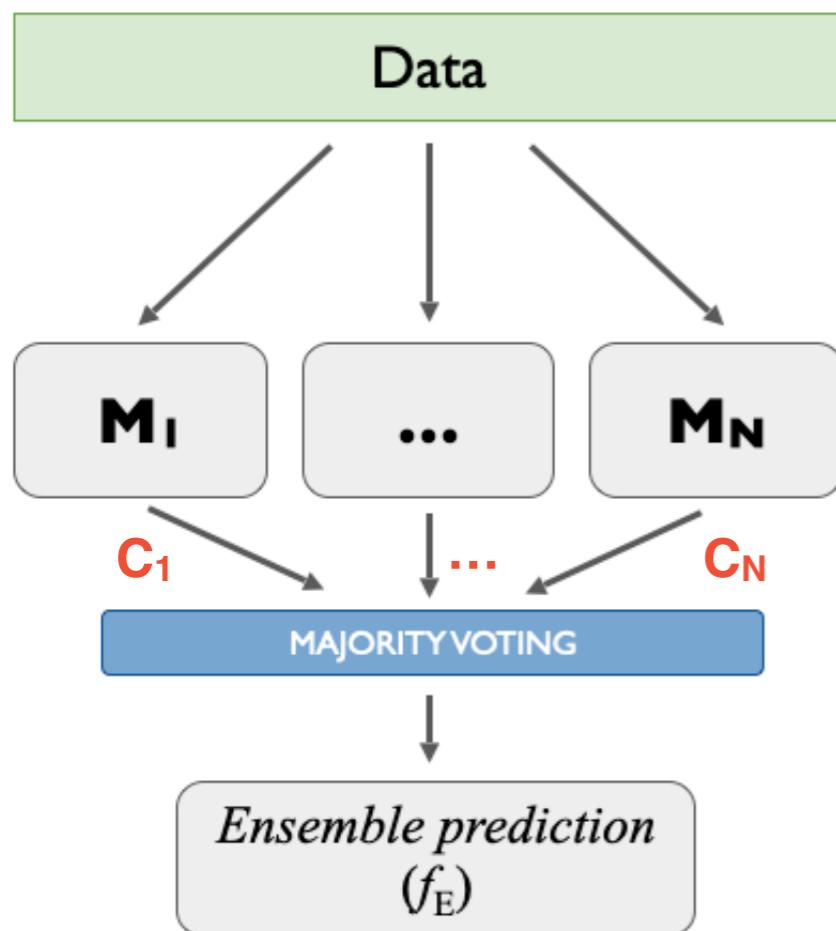
- Each classifier predicts a label/class (C_1, C_2, \dots, C_N)
- **Uniform, majority voting:** predictions made by all classifiers contribute equally to the final decision
- Final prediction: the class with the most votes
- Let $d_{k,j} = 1$ if the k -th classifier predicted class C_j (and $d_{k,j} = 0$ otherwise)

$$\text{Final predicted class} = \max_{j=\{1, \dots, C\}} \sum_{k=1}^N d_{k,j}$$

Combining Models' Predictions

Voting methods vs. Averaging methods

Based on the type of data being predicted
discrete values (or classes) vs. continuous values



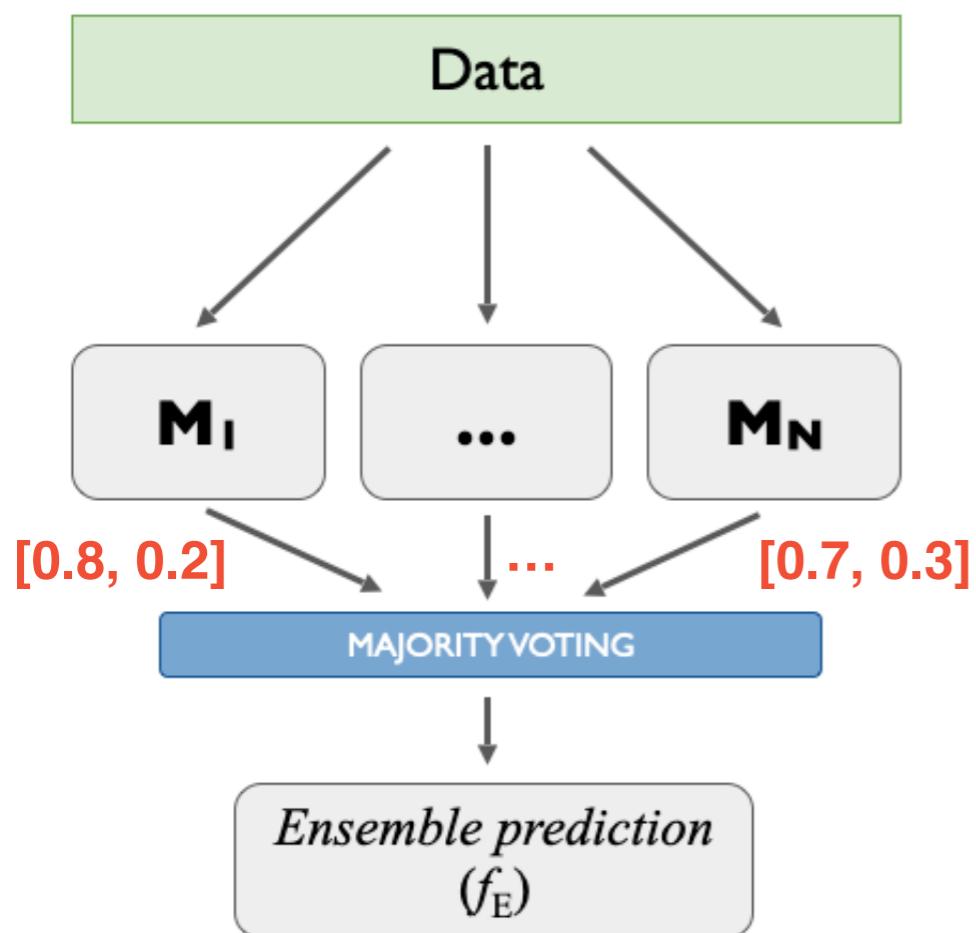
- Each classifier predicts a label/class (C_1, C_2, \dots, C_N)
- **Weighted, majority voting:** weights can be assigned to each classifier's predictions if some classifiers are "better" than others
- Weights w_k , for each k -th classifier, can be computed by evaluating the classifier's performance on training/validation datasets
- Let $d_{k,j} = 1$ if the k -th classifier predicted class C_j (and $d_{k,j} = 0$ otherwise)

$$\text{Final predicted class} = \max_{j=\{1, \dots, C\}} \sum_{k=1}^N w_k d_{k,j}$$

Combining Models' Predictions

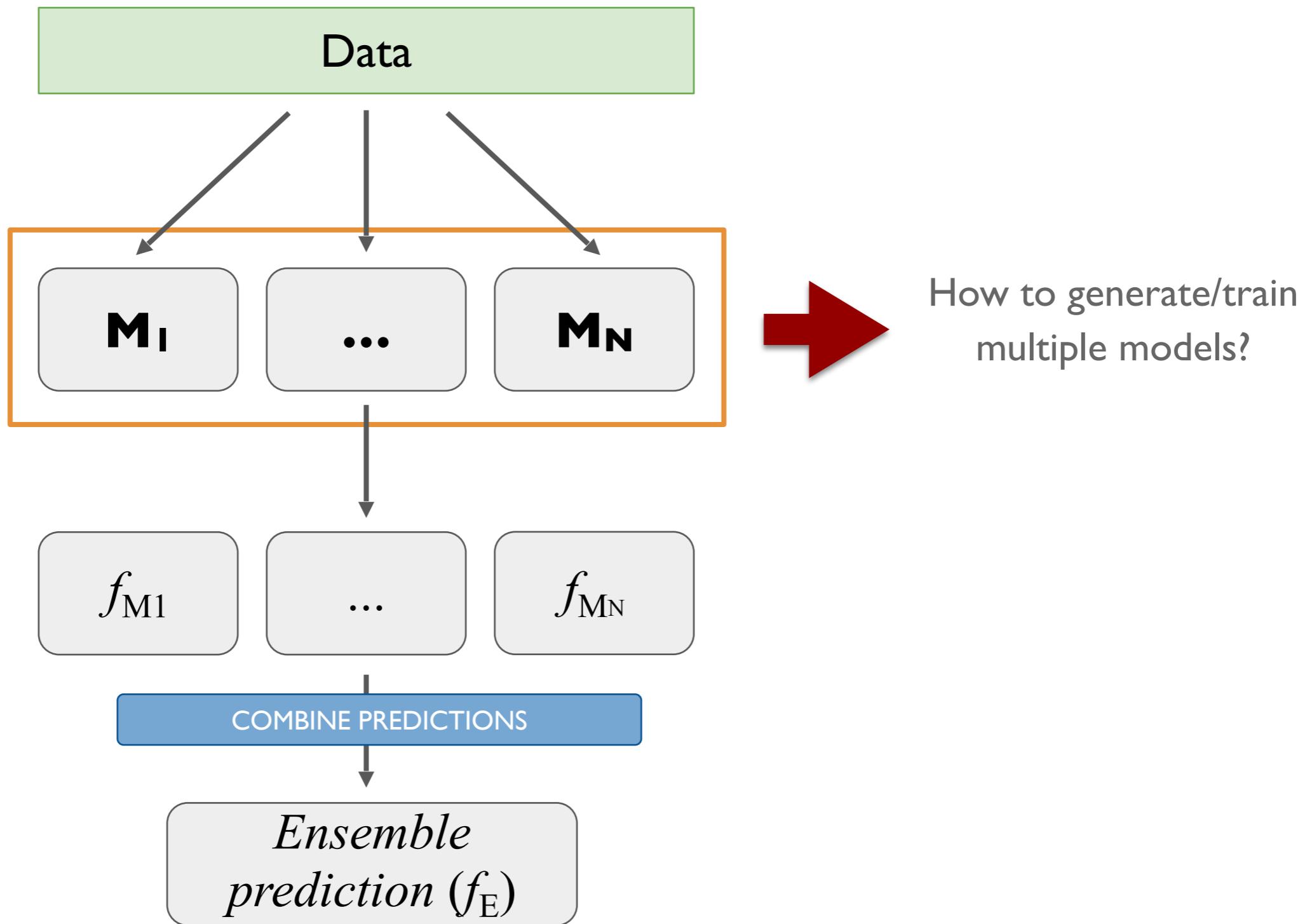
Voting methods vs. Averaging methods

Based on the type of data being predicted
discrete values (or classes) vs. continuous values

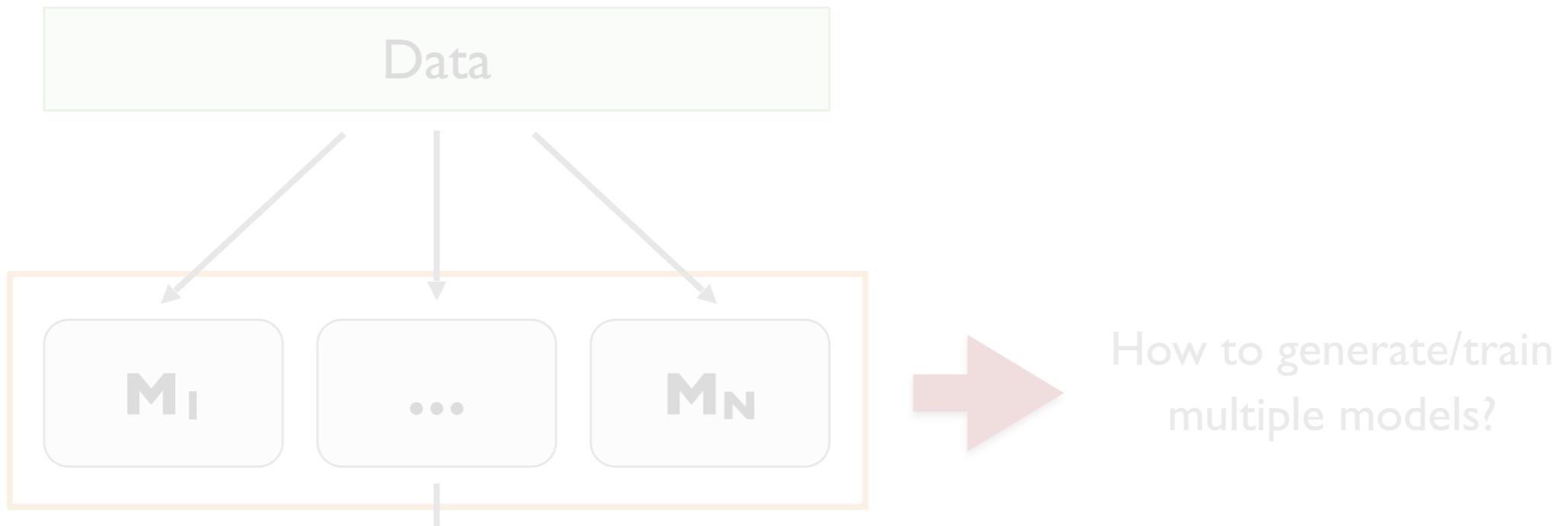


- Each classifier outputs the probability that the input belongs to each possible class ($Pr[1], Pr[2], \dots, Pr[N]$)
- **Different ways of combining such predictions:**
 - e.g., average, product, maximum, minimum, median, etc.
- Final predicted class:
 - the one that maximizes the quantity as defined above

Multiple Models in ML



Multiple Models in ML

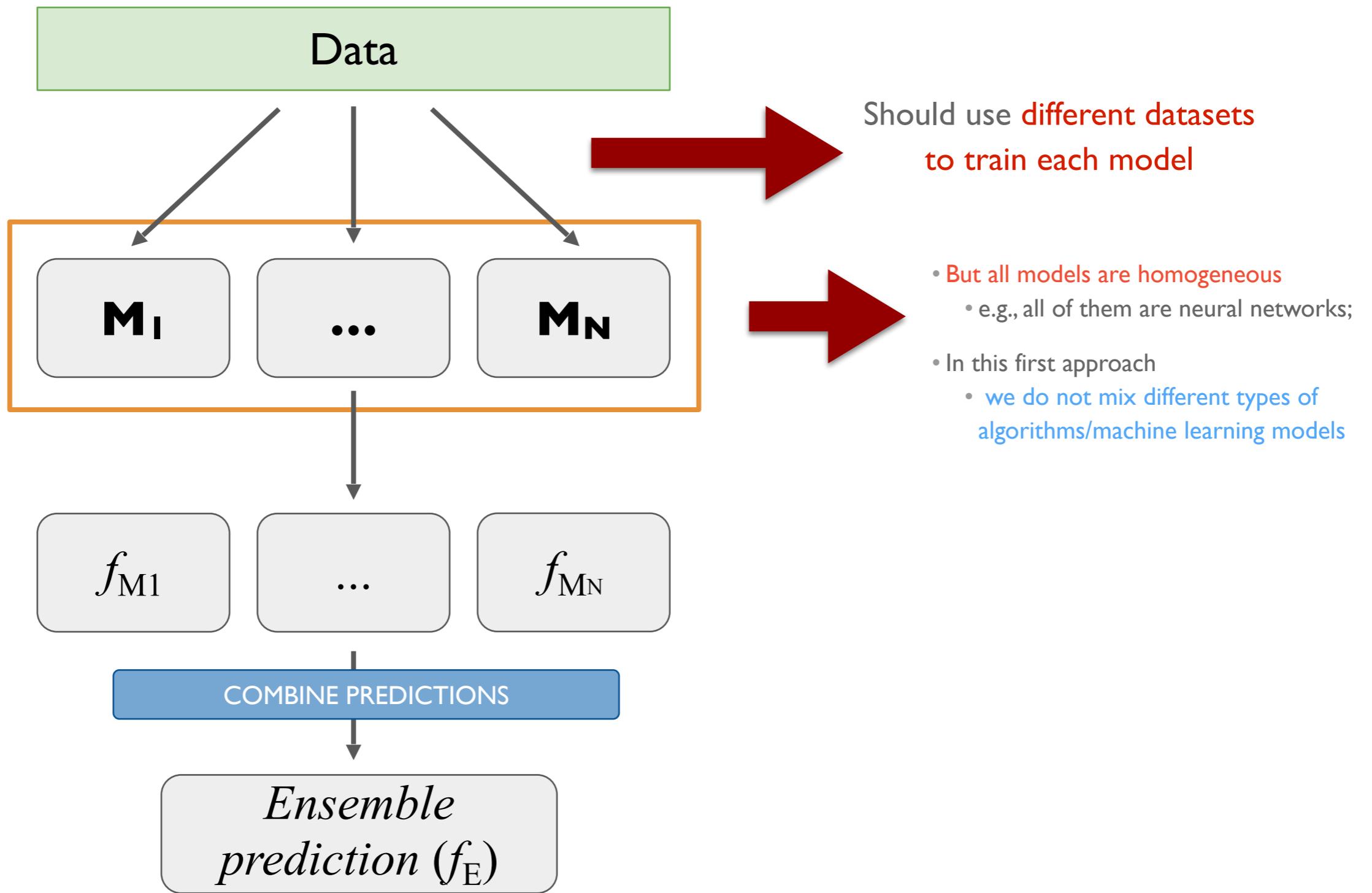


Ideally: generate a diverse set of models in the ensemble

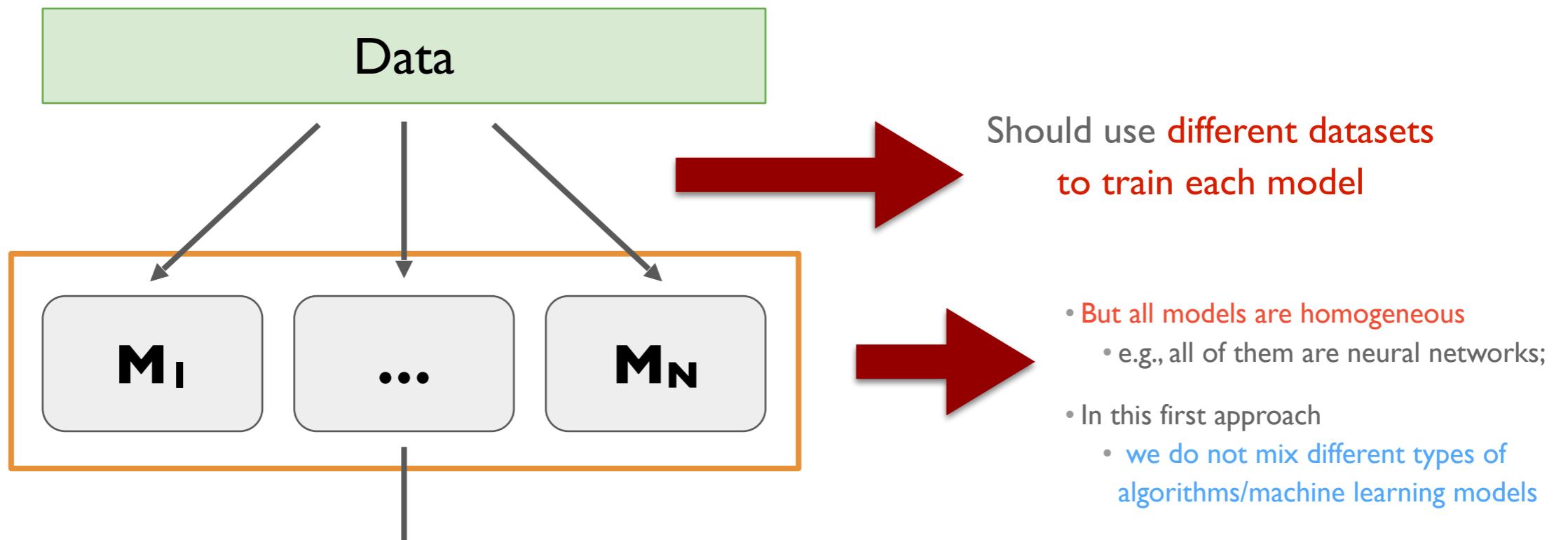
What does diversity mean?

*Ensemble
prediction (f_E)*

Multiple Models in ML



Multiple Models in ML



Methods based on (re-)sampling from the training set

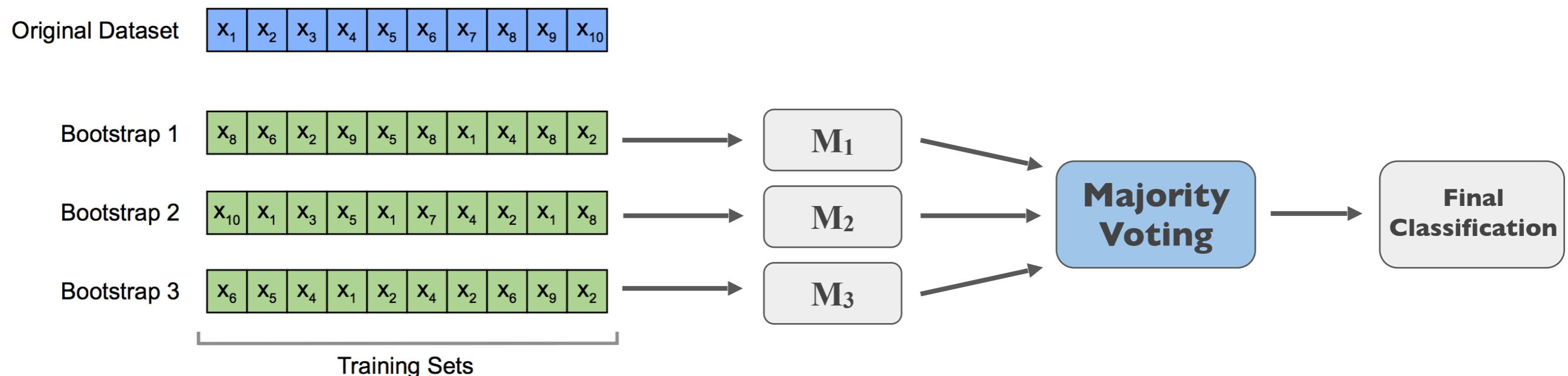
*Ensemble
prediction (f_E)*

Bagging (a.k.a., Bootstrap Aggregating)

- Diversity: achieved by generating many “synthetic” datasets based on the original training set
 - Each new “synthetic” dataset is known as a **bootstrap** dataset
 - Bootstrap datasets are created by sampling (with replacement) from the original/complete dataset
 - If the original dataset has size N , each bootstrap dataset should also have size N

Bagging (a.k.a., Bootstrap Aggregating)

- Diversity: achieved by generating many “synthetic” datasets based on the original training set
 - Each new “synthetic” dataset is known as a **bootstrap** dataset
 - Bootstrap datasets are created by sampling (with replacement) from the original/complete dataset
 - If the original dataset has size N , each bootstrap dataset should also have size N
 - One classifier (same algorithm, same hyper-parameters) is trained based on each bootstrap
 - To classify new instances, perform majority voting considering all models in the ensemble



Bagging (a.k.a., Bootstrap Aggregating)

Input:

- Training data S with correct labels $\omega_i \in \Omega = \{\omega_1, \dots, \omega_C\}$ representing C classes
- Weak learning algorithm **WeakLearn**,
- Integer T specifying number of iterations.
- Percent (or fraction) F to create bootstrapped training data

Do $t = 1, \dots, T$

1. Take a bootstrapped replica S_t by randomly drawing F percent of S .
2. Call **WeakLearn** with S_t and receive the hypothesis (classifier) h_t .
3. Add h_t to the ensemble, \mathbb{E} .

End

Test: Simple Majority Voting – Given unlabeled instance \mathbf{x}

1. Evaluate the ensemble $\mathbb{E} = \{h_1, \dots, h_T\}$ on \mathbf{x} .

$$2. \text{ Let } v_{t,j} = \begin{cases} 1, & \text{if } h_t \text{ picks class } \omega_j \\ 0, & \text{otherwise} \end{cases} \quad (8)$$

be the vote given to class ω_j by classifier h_t .

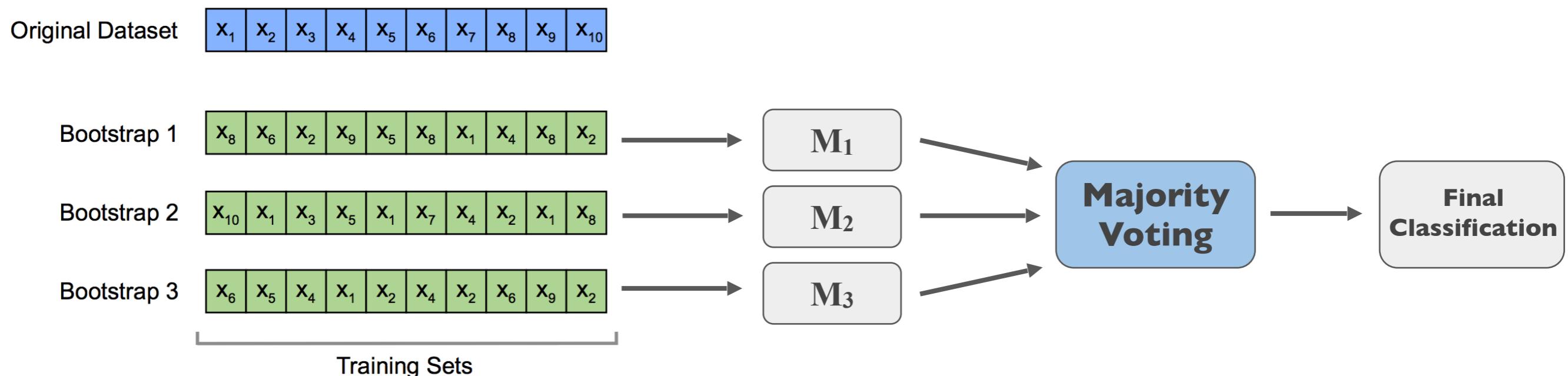
3. Obtain total vote received by each class

$$V_j = \sum_{t=1}^T v_{t,j}, \quad j = 1, \dots, C \quad (9)$$

4. Choose the class that receives the highest total vote as the final classification.

Bagging (a.k.a., Bootstrap Aggregating)

- Usually performs well when we have small datasets
- Bagging helps decrease the *variance* of the resulting classifier, by computing the “average” output of multiple models
- Does not help decrease the *bias* of the algorithm, though:
 - if each individual model in the ensemble is strongly biased towards a “wrong way of explaining the training set”
 - combining their outputs will not help...



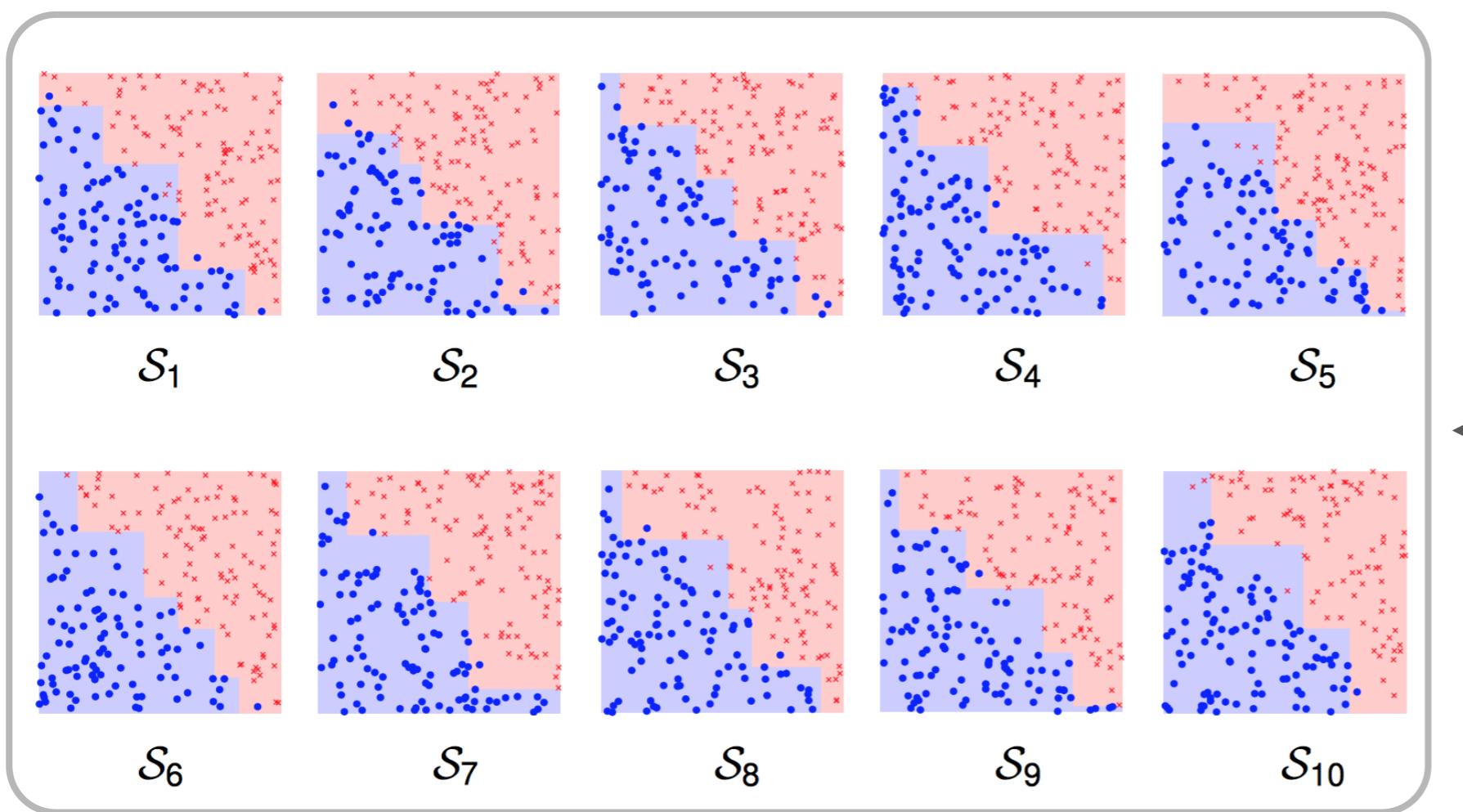
Bagging (a.k.a., Bootstrap Aggregating)

- How would Bagging work if combined with the Decision Tree algorithm?
 - Train multiple decision trees
 - Each one based on a different bootstrap dataset (e.g., bootstrap datasets $\mathcal{S}_1, \mathcal{S}_2, \dots, \mathcal{S}_{10}$)
 - Because data given to each tree is slightly different...
 - the trees will be slightly different (e.g., will perform different tests/attribute splits)
 - Each tree will thus result in a slightly different decision boundary

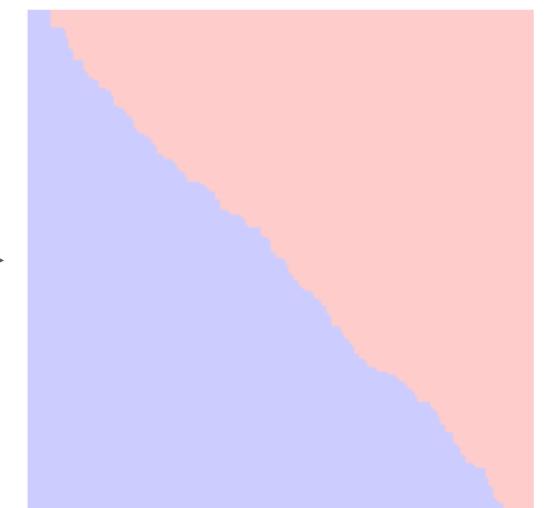
Bagging (a.k.a., Bootstrap Aggregating)

- How would Bagging work if combined with the Decision Tree algorithm?

- Train multiple decision trees
- Each one based on a different bootstrap dataset (e.g., bootstrap datasets $\mathcal{S}_1, \mathcal{S}_2, \dots, \mathcal{S}_{10}$)
- Because data given to each tree is slightly different...
 - the trees will be slightly different (e.g., will perform different tests/attribute splits)
- Each tree will thus result in a slightly different decision boundary

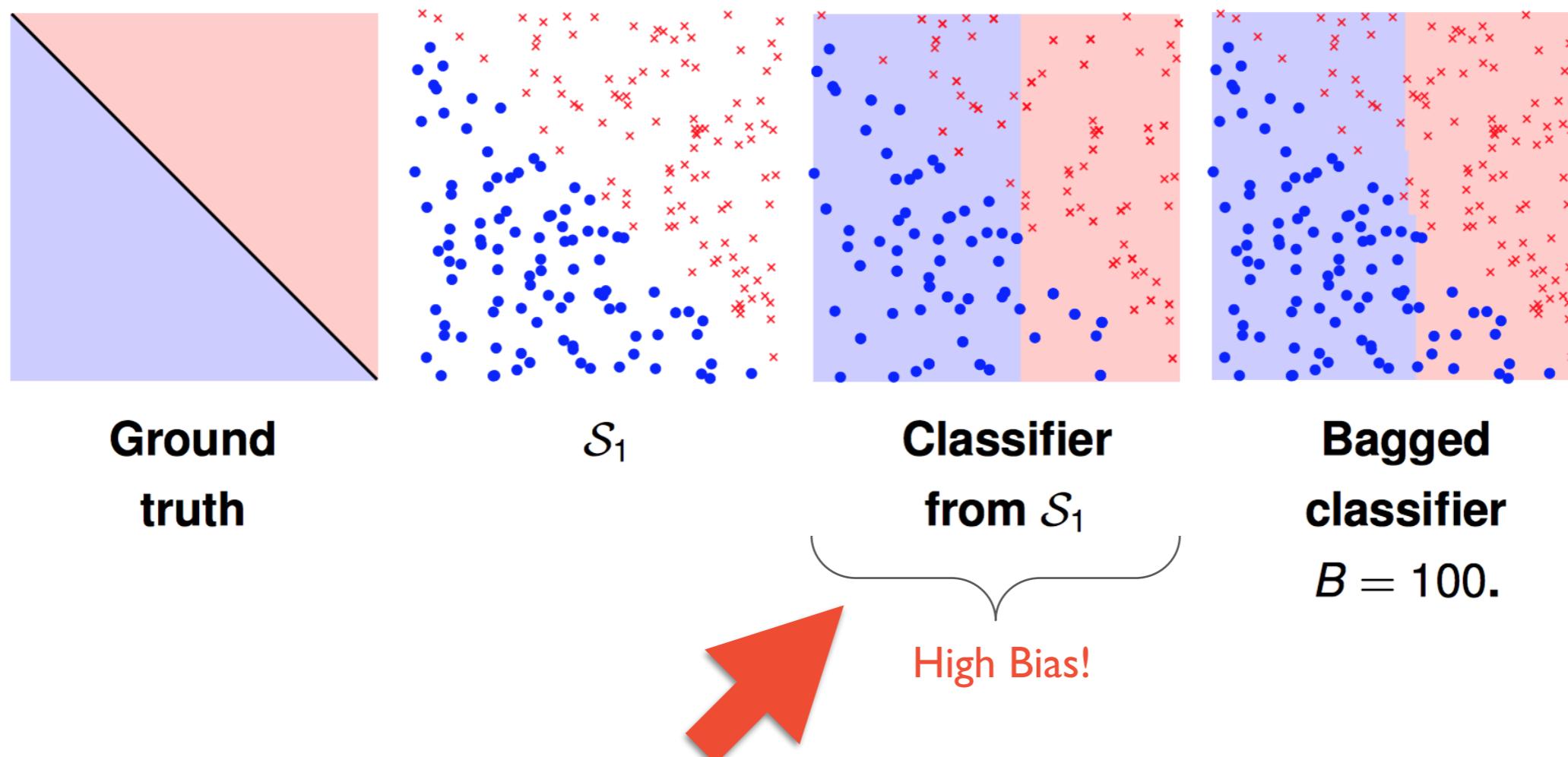


“Average” decision boundary of the ensemble



Bagging (a.k.a., Bootstrap Aggregating)

- As previously mentioned:
 - Bagging helps decrease the **variance** of the resulting classifier, by computing the “average” output of multiple models
 - But it **does not help decrease the bias** of the algorithm:
 - If each individual model in the ensemble is strongly biased towards a “**wrong way of explaining the training set**”
 - then combining their outputs will not help...



Bagging (a.k.a., Bootstrap Aggregating)

- As previously mentioned:
 - Bagging helps decrease the **variance** of the resulting classifier, by computing the “average” output of multiple models
 - But it **does not help decrease the bias** of the algorithm:
 - If each individual model in the ensemble is strongly biased towards a “**wrong way of explaining the training set**”
 - then combining their outputs will not help...

So Bagging does not help if we have “weak learners” like these
(i.e., models with low variance and high bias)

What can we do in this case, to improve the performance of the ensemble?

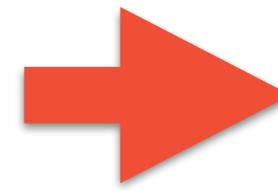
Ground
truth

\mathcal{S}_1

Classifier
from \mathcal{S}_1

Bagged
classifier
 $B = 100$.

High Bias!



Boosting

- As previously mentioned:
 - Bagging helps decrease the **variance** of the resulting classifier, by computing the “average” output of multiple models
 - But it **does not help decrease the bias** of the algorithm:
 - If each individual model in the ensemble is strongly biased towards a “**wrong way of explaining the training set**”
 - then combining their outputs will not help...

So Bagging does not help if we have “weak learners” like these
(i.e., models with low variance and high bias)

What can we do in this case, to improve the performance of the ensemble?

But before we talk about Boosting....

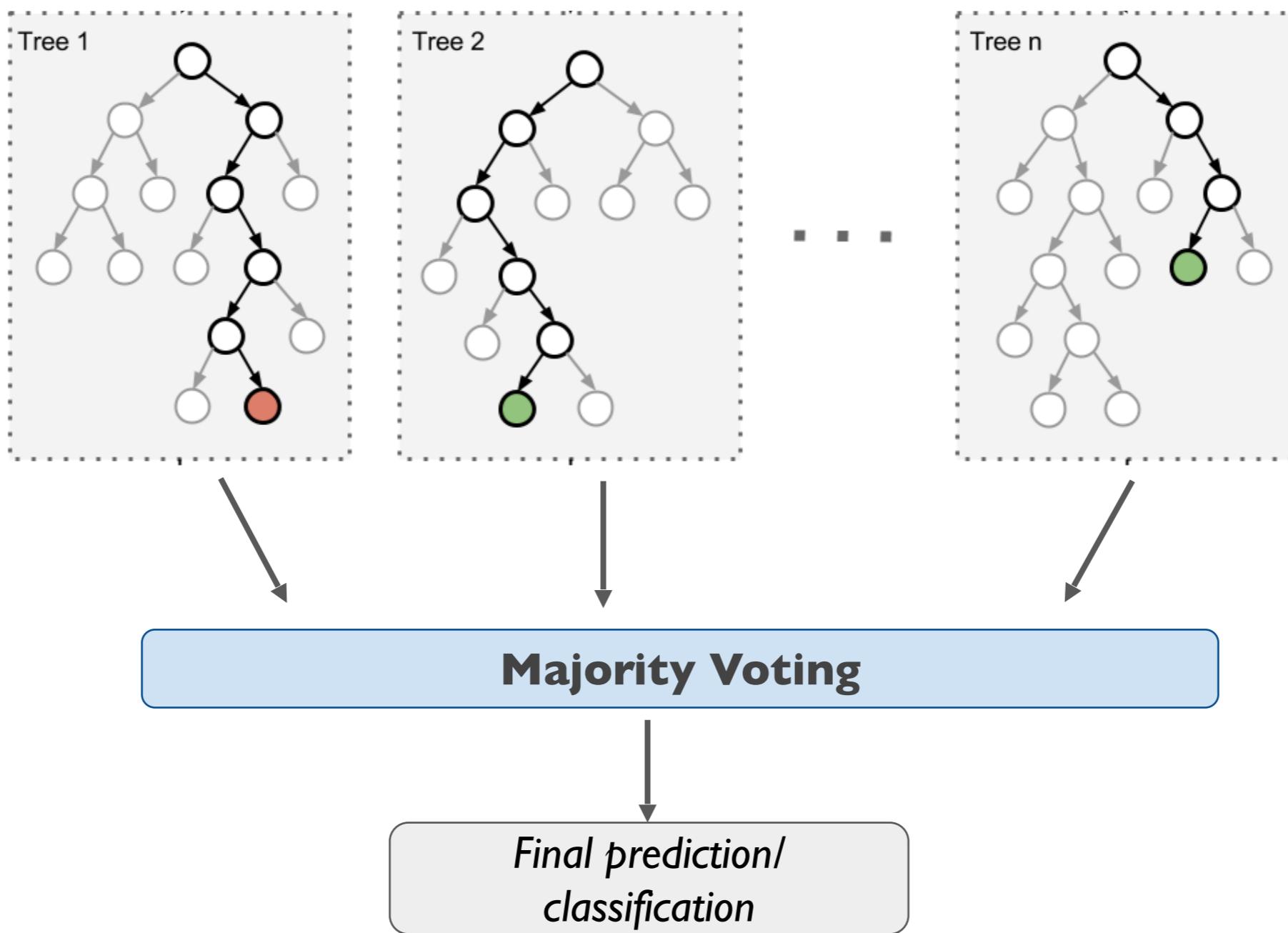
Let us present a widely-used ML algorithm based on Bagging

Random Forests

Random Forests

Random Forests

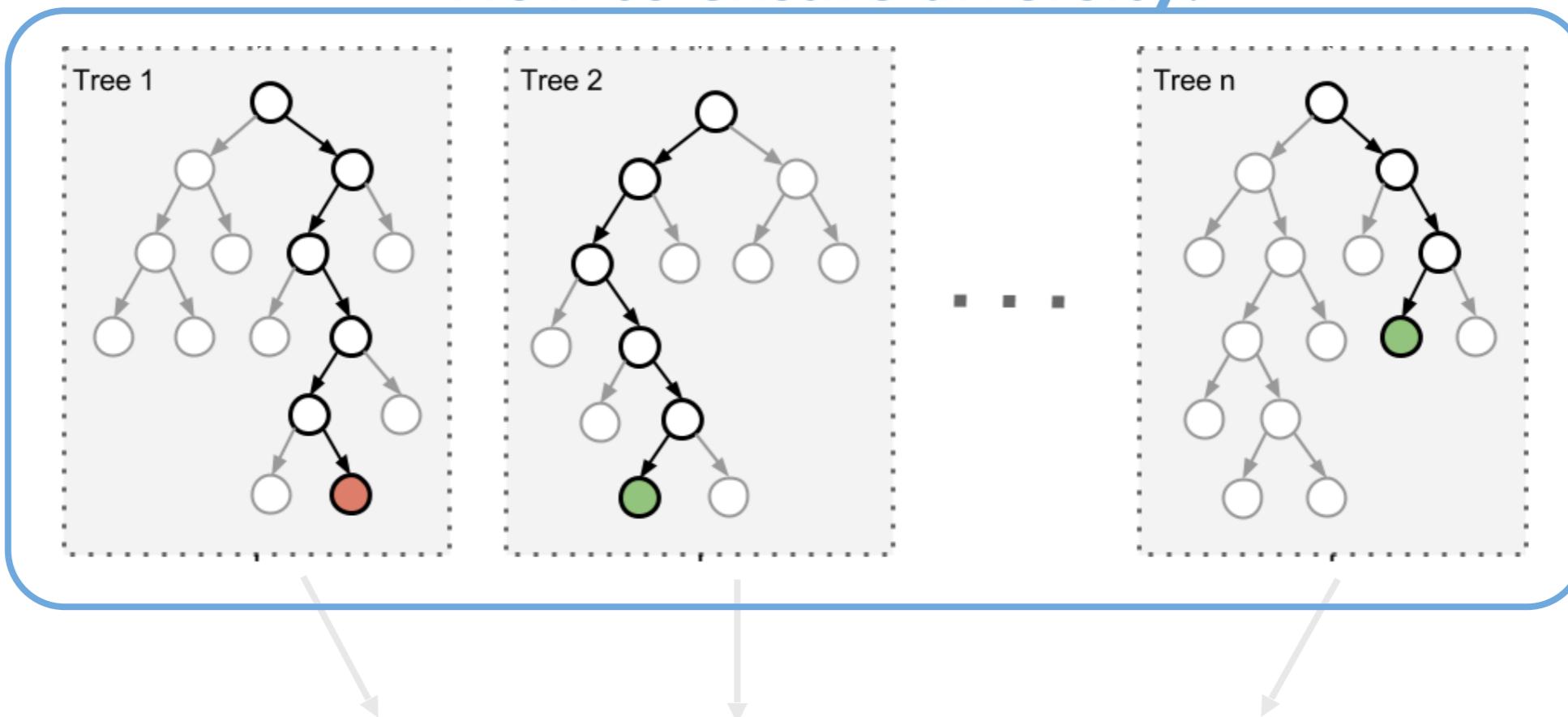
- Trains many (slightly different) Decision Trees
- Their predictions are combined via majority voting



Random Forests

- Trains many (slightly different) Decision Trees
- Their predictions are combined via majority voting

How to ensure diversity?



Bagging, combined with selection of random attributes

*Final prediction/
classification*

Random Forests

- **Bagging + selection of random attributes**

- **Bagging**

- Each tree is trained with a different bootstrap dataset
 - Sampling (with replacement) from original dataset

- **Selection of random attributes**

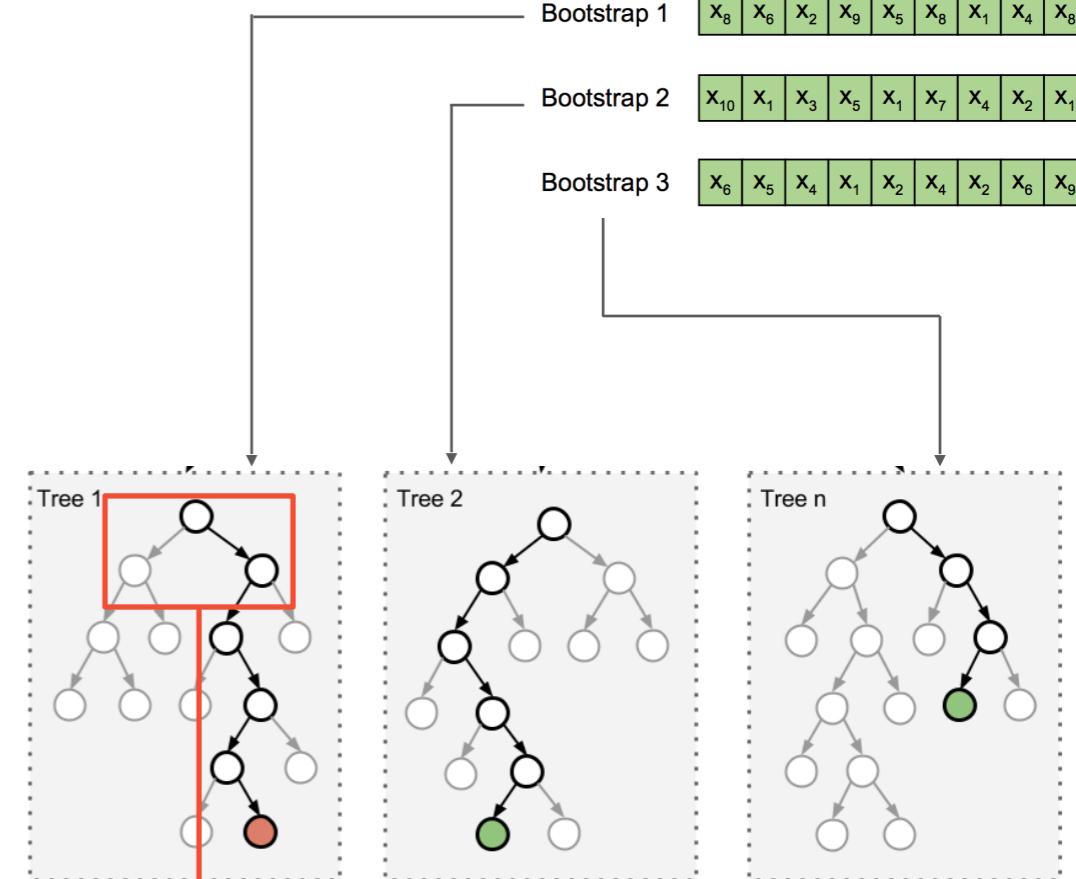
- Whenever splitting a node
 - Does not check Information Gain of *all* attributes

Original Dataset	x_1	x_2	x_3	x_4	x_5	x_6	x_7	x_8	x_9	x_{10}
------------------	-------	-------	-------	-------	-------	-------	-------	-------	-------	----------

Bootstrap 1	x_8	x_6	x_2	x_9	x_5	x_8	x_1	x_4	x_8	x_2
-------------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------

Bootstrap 2	x_{10}	x_1	x_3	x_5	x_1	x_7	x_4	x_2	x_1	x_8
-------------	----------	-------	-------	-------	-------	-------	-------	-------	-------	-------

Bootstrap 3	x_6	x_5	x_4	x_1	x_2	x_4	x_2	x_6	x_9	x_2
-------------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------



All possible attributes

	x_k^1	x_k^2	...	x_k^{d-1}	x_k^d
x_1					
...					
x_n					

Random Forests

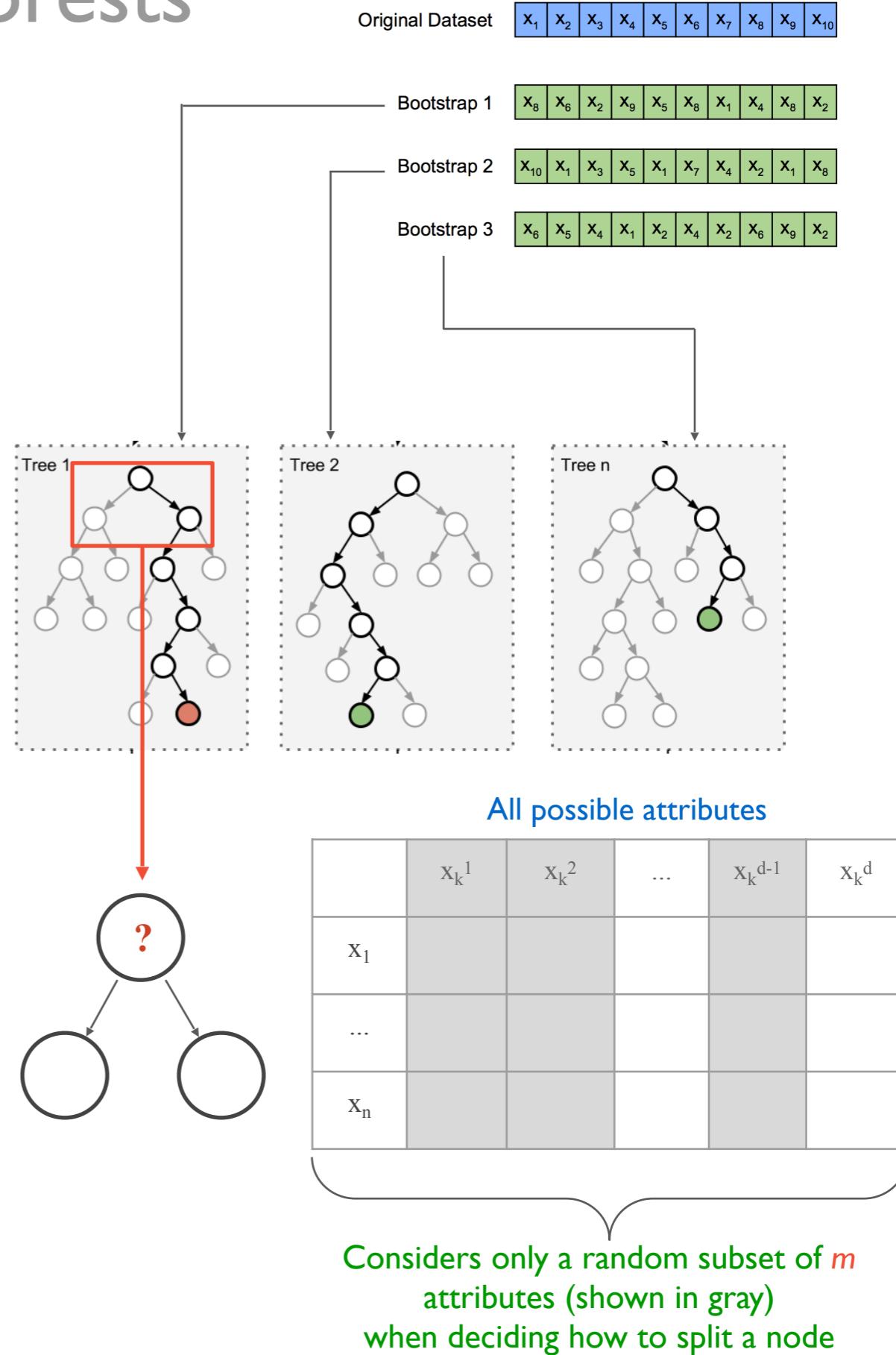
- **Bagging + selection of random attributes**

- **Bagging**

- Each tree is trained with a different bootstrap dataset
 - Sampling (with replacement) from original dataset

- **Selection of random attributes**

- Whenever splitting a node
 - Does not check Information Gain of *all* attributes
 - Only of a subset of *m* randomly selected attributes,
 - Out of all possible attributes



Random Forests

- **Bagging + selection of random attributes**

- **Bagging**

- Each tree is trained with a different bootstrap dataset
 - Sampling (with replacement) from original dataset

- **Selection of random attributes**

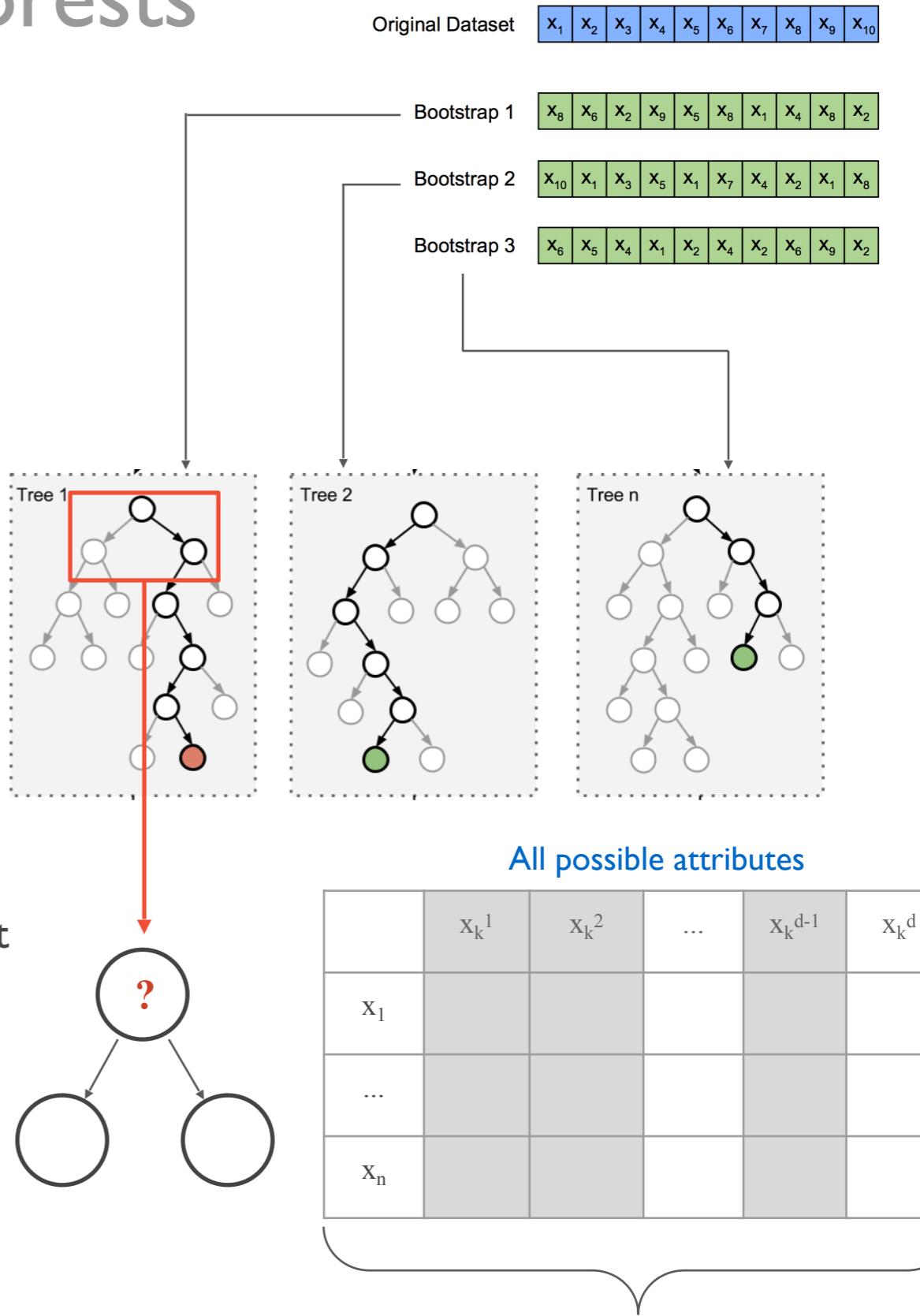
- Whenever splitting a node
 - Does not check Information Gain of *all* attributes
 - Only of a subset of *m* randomly selected attributes,
 - Out of all possible attributes
 - Splits node based on the attribute with best Information Gain (or Gini index, etc)

- **Performing these two sampling procedures**

- Highly diverse ensemble of decision trees

- **Out-of-Bag instances (test instances)**

- Approximately 1/3 of the data
- Used to evaluate the ensemble



Random Forests

- **Bagging + selection of random attributes**

- **Bagging**

- Each tree is trained with a different bootstrap dataset
 - Sampling (with replacement) from original dataset

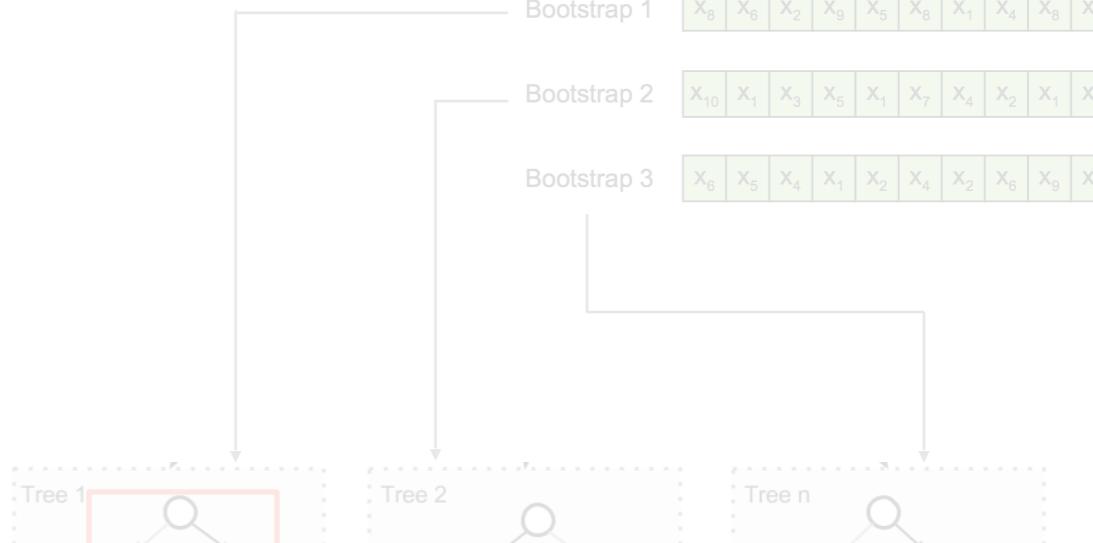
Original Dataset: $x_1, x_2, x_3, x_4, x_5, x_6, x_7, x_8, x_9, x_{10}$

Original Dataset: $x_1, x_2, x_3, x_4, x_5, x_6, x_7, x_8, x_9, x_{10}$

Bootstrap 1: $x_8, x_6, x_2, x_9, x_5, x_8, x_1, x_4, x_8, x_2$

Bootstrap 2: $x_{10}, x_1, x_3, x_6, x_1, x_7, x_4, x_2, x_1, x_8$

Bootstrap 3: $x_6, x_5, x_4, x_1, x_2, x_4, x_2, x_6, x_9, x_2$



One of the most widely used (supervised) machine learning model nowadays

Often, state-of-the-art in real-life applications

- Out of all possible attributes
- Splits node based on the attribute with best Information Gain (or Gini index, etc)

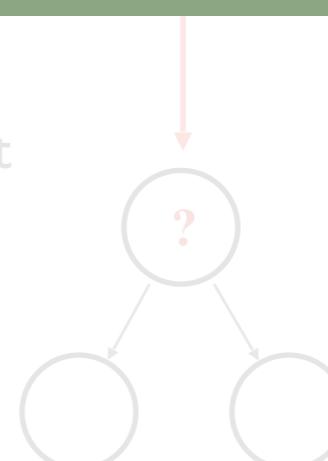
- **Performing these two sampling procedures**

- Highly diverse ensemble of decision trees

- **Out-of-Bag instances (test instances)**

- Approximately 1/3 of the data

- Used to evaluate the ensemble

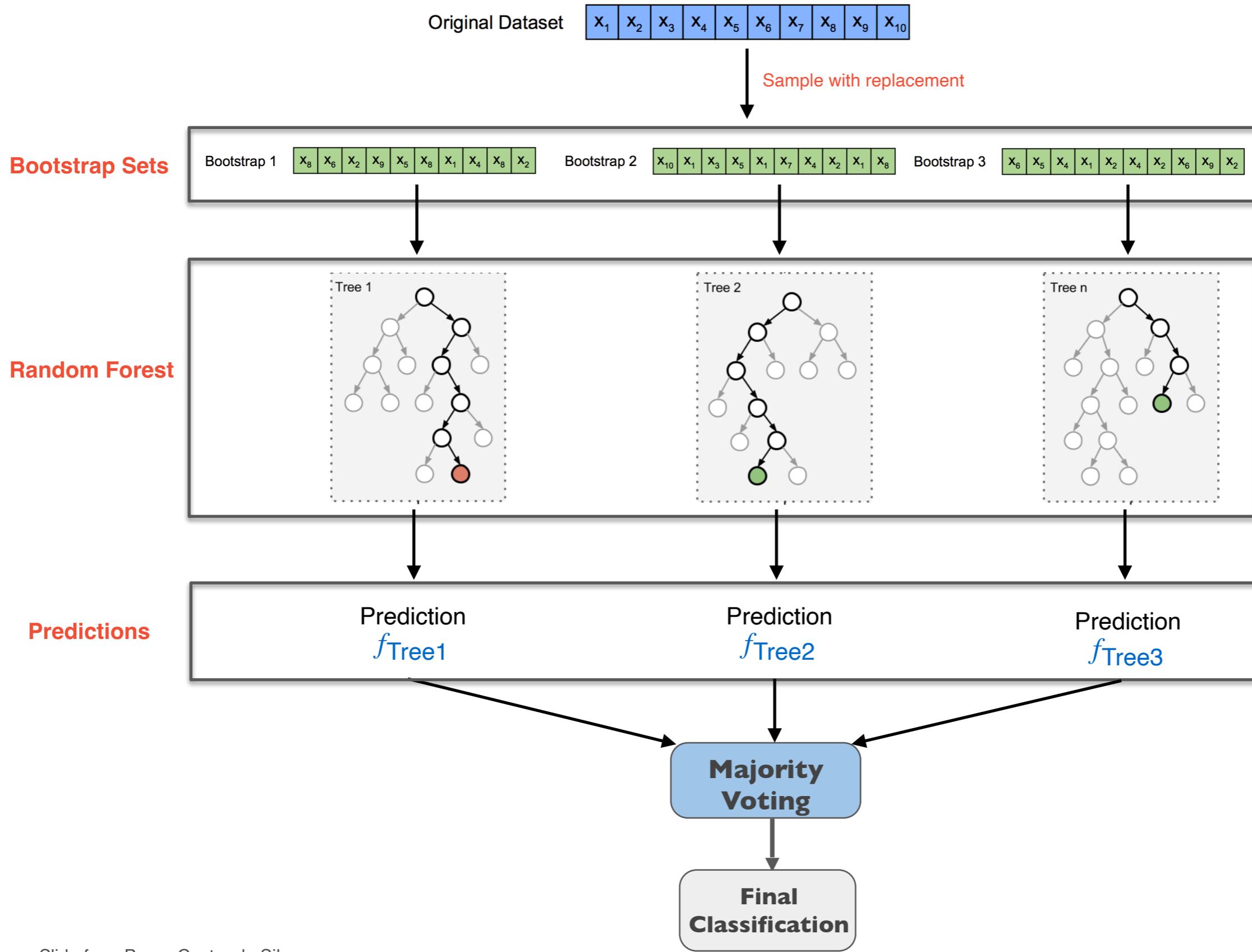


All possible attributes

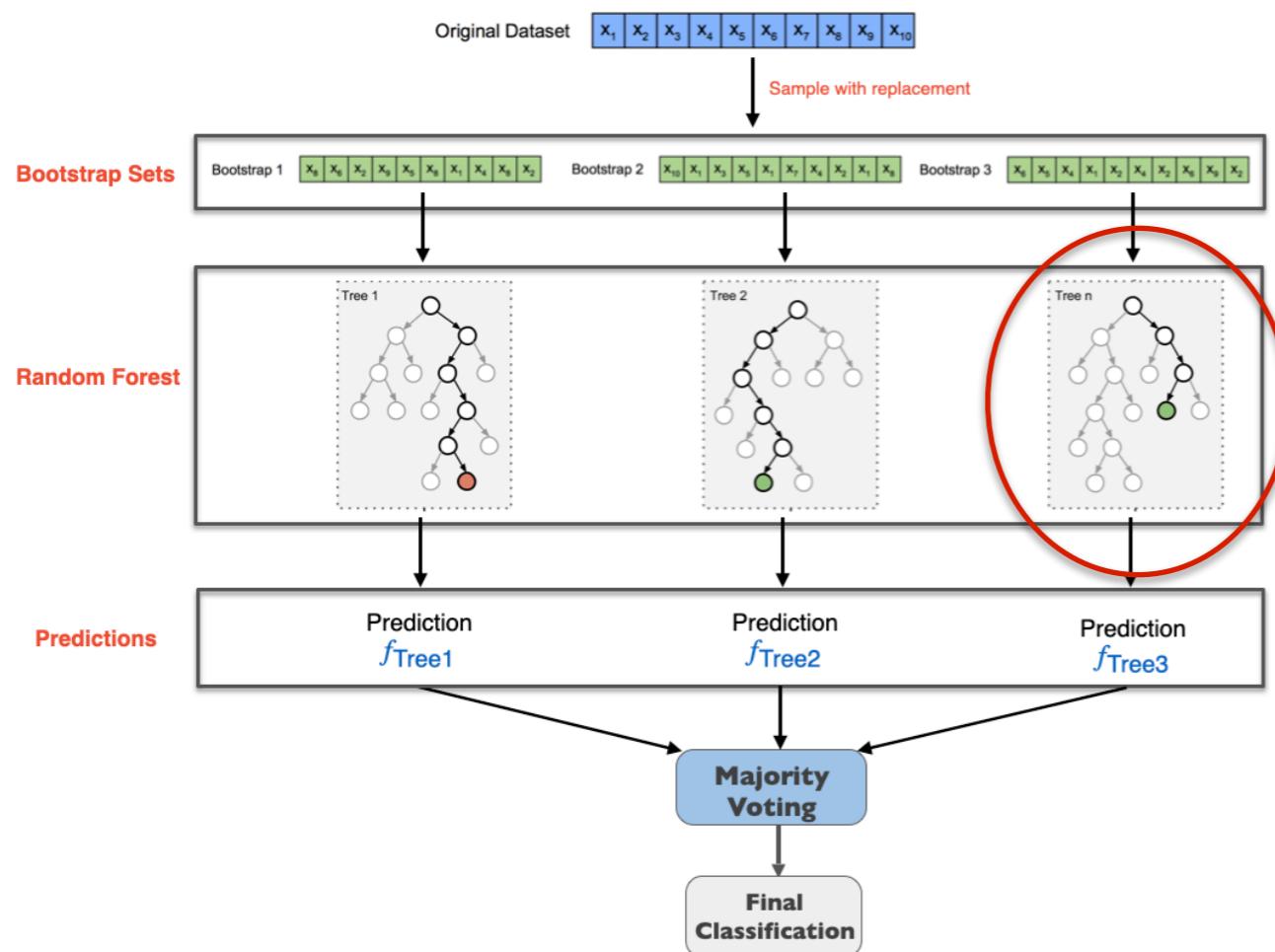
	x_k^1	x_k^2	...	x_k^{d-1}	x_k^d
x_1					
...					
x_n					

Considers only a random subset of m attributes (shown in gray) when deciding how to split a node

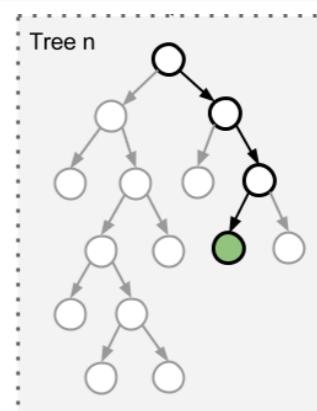
Random Forests



Random Forests



A Random Tree



1. Assume we are splitting the green node
2. Assume there are a total of X features
3. Pick a random subset of $m \approx \sqrt{X}$ of all attributes
4. Out of these, select the one with best Information Gain

Random Forests: Training

1. Let D be the original training set

1. D contains N training instances, each with X attributes

2. For each bootstrap $b = 1, \dots, B$

1. Construct a bootstrap dataset of size N by sampling from D with replacement

2. Train a decision tree based on this bootstrap by recursively:

1. Picking a random subset of $m \approx \sqrt{X}$ attributes

2. Out of these, select the best attribute to split the current node

(e.g., based to Information Gain)

3. Add the node to the tree and use it to partition the data into disjoint subsets

3. Return the ensemble of learned trees \rightarrow the **Random Forest**

Original Dataset

x_1	x_2	x_3	x_4	x_5	x_6	x_7	x_8	x_9	x_{10}
-------	-------	-------	-------	-------	-------	-------	-------	-------	----------

Bootstrap 1

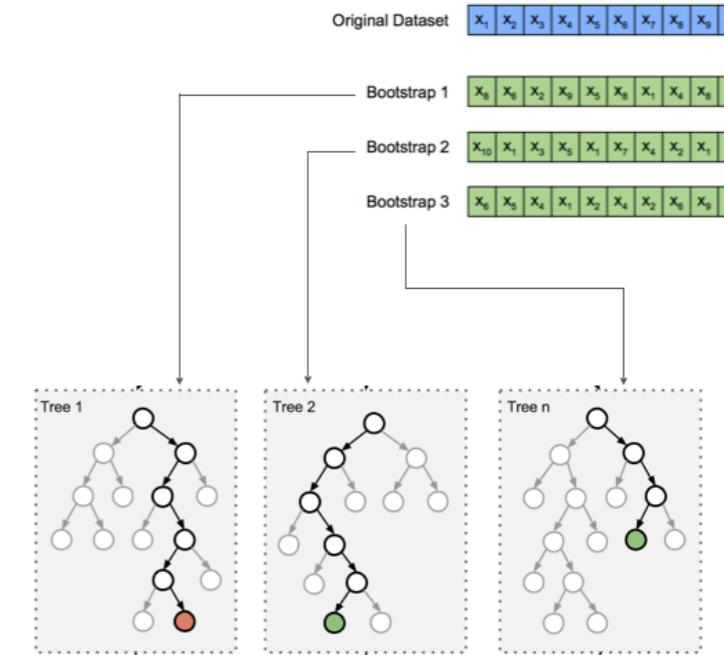
x_8	x_9	x_2	x_3	x_5	x_6	x_1	x_4	x_8	x_2
-------	-------	-------	-------	-------	-------	-------	-------	-------	-------

Bootstrap 2

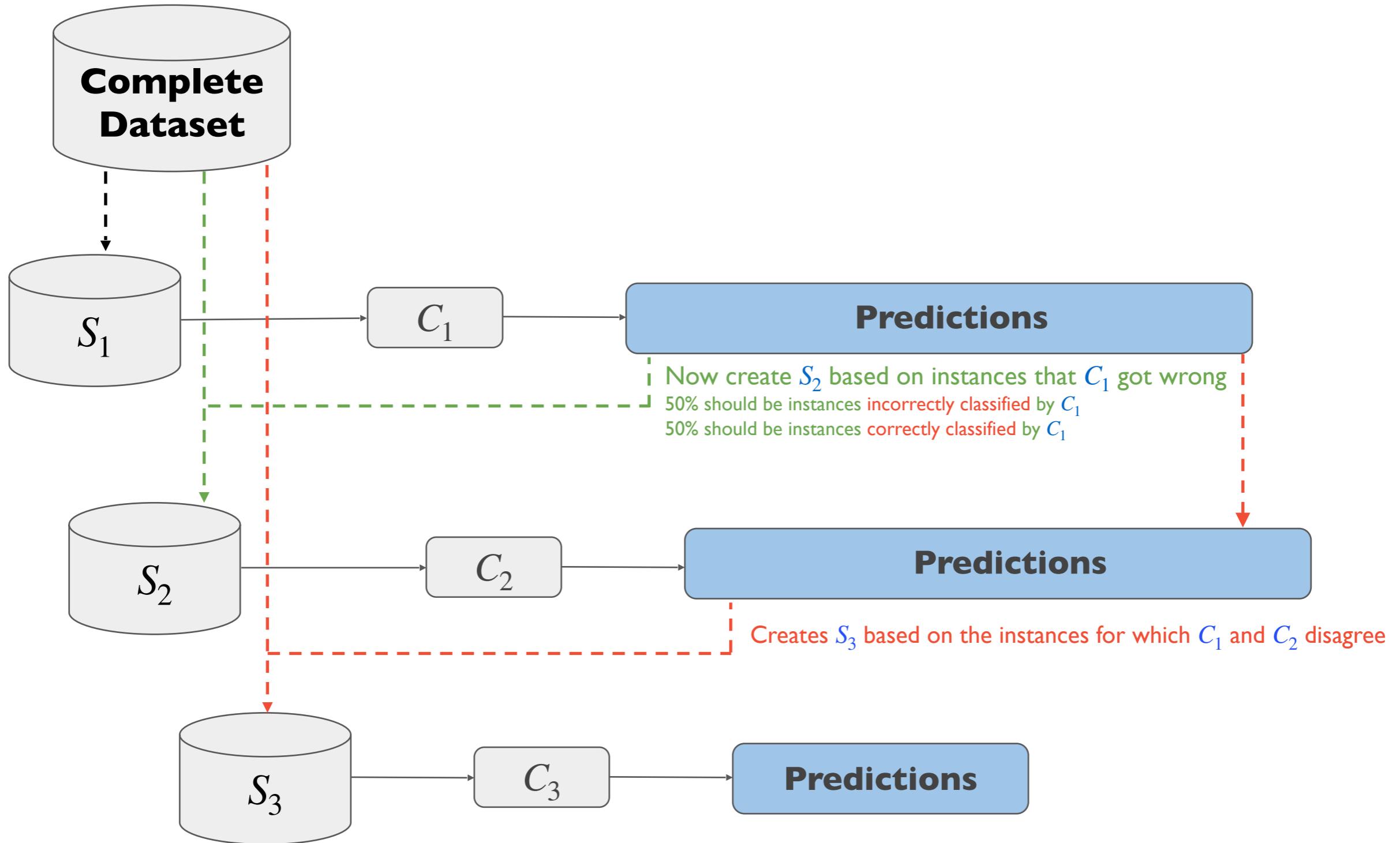
x_{10}	x_1	x_3	x_5	x_1	x_7	x_4	x_2	x_1	x_8
----------	-------	-------	-------	-------	-------	-------	-------	-------	-------

Bootstrap 3

x_6	x_5	x_4	x_1	x_2	x_4	x_2	x_6	x_8	x_2
-------	-------	-------	-------	-------	-------	-------	-------	-------	-------



Boosting: Training



Boosting

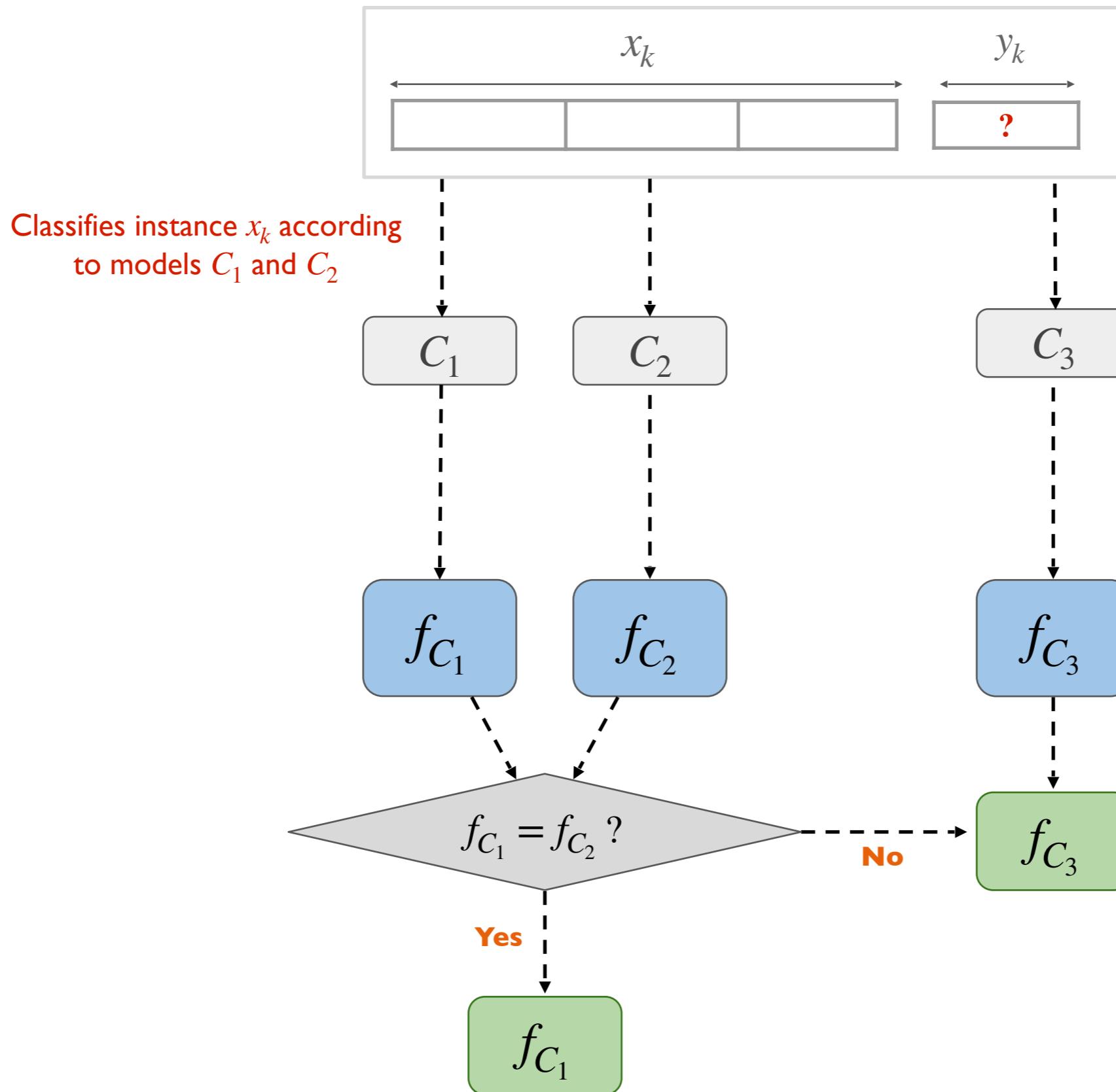
- **Boosting**
- Intuition assuming an ensemble composed of 3 classifiers
- **Training**
 - Construct a *first* random subset of instances, S_1 , of the original dataset
 - Use S_1 to train a weak classifier C_1
 - Construct a *second* random subset of instances, S_2
 - These are the instances that were “challenging” for C_1
 - Half of S_2 will be composed of instances incorrectly classified by C_1
 - Half of S_2 will be composed of instances correctly classified by C_1
 - Use S_2 to train a weak classifier C_2 (i.e., C_2 will focus on the instances that C_1 got wrong)
 - Construct a *third* random subset of instances, S_3
 - Composed of all instances for which C_1 and C_2 disagree
 - Use S_3 to train a final weak classifier C_3

Boosting: Classifying New Instances

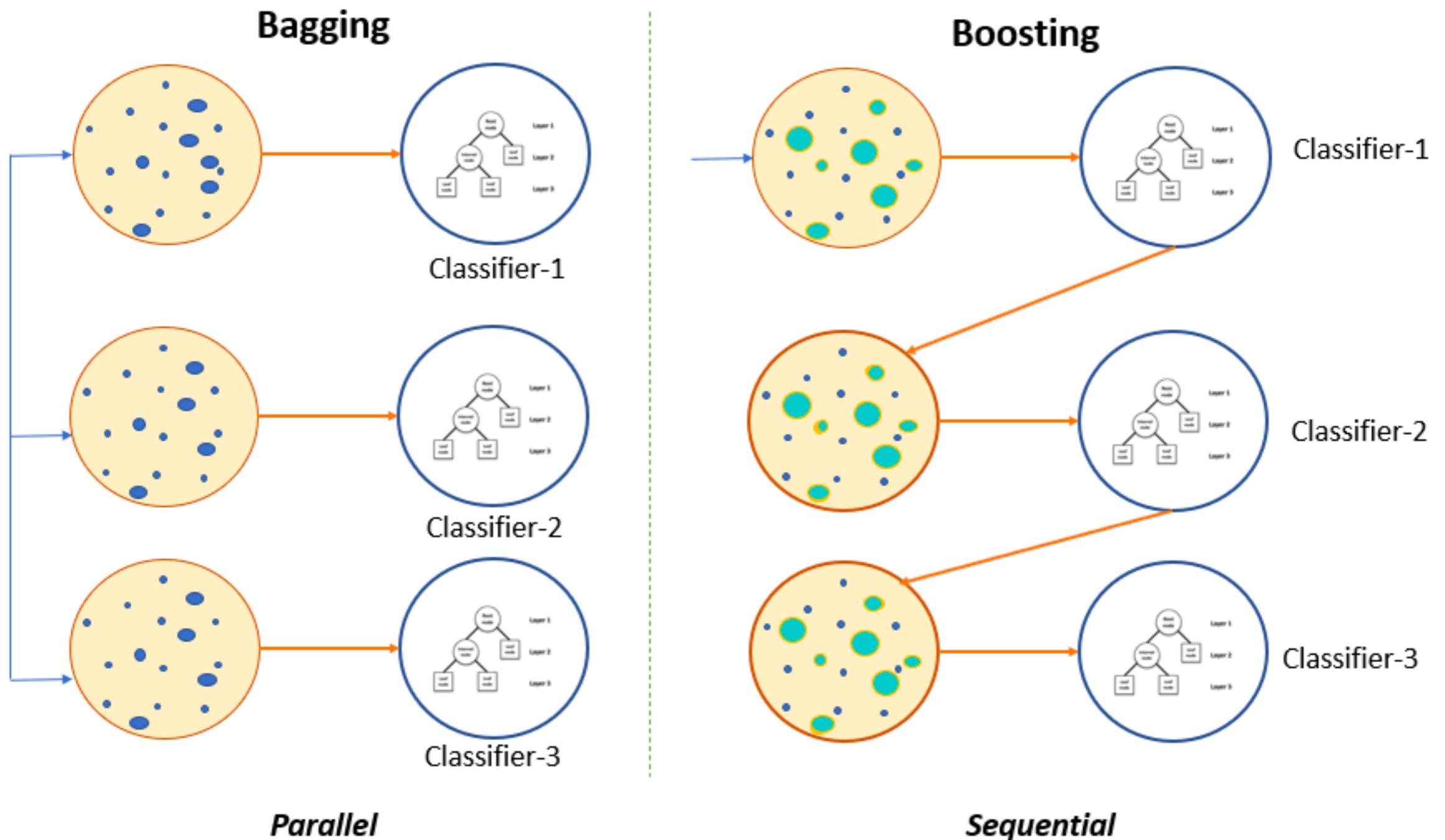
Intuition

- When classifying a new instance, check the predicted label according to C_1 and C_2
- If C_1 and C_2 agree regarding the predicted class, that will be the final output/prediction made by the ensemble
- If C_1 and C_2 disagree, use C_3 's prediction as the final output/prediction made by the ensemble

Boosting: Classifying New Instances



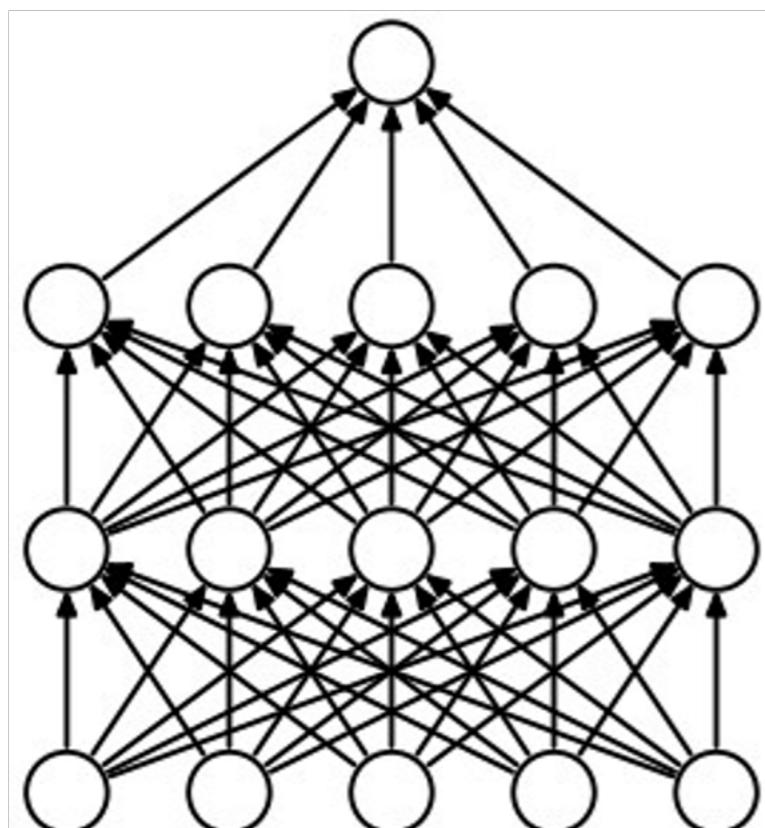
Bagging vs. Boosting



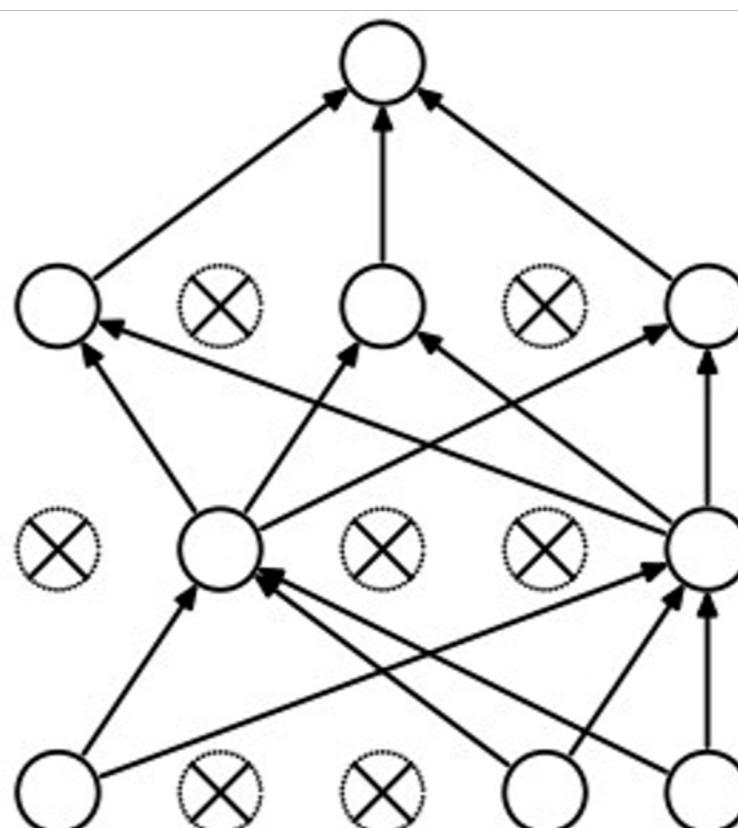
Model Ensemble in Neural Networks

Regularization: Dropout

“randomly set some neurons to zero in the forward pass”



(a) Standard Neural Net



(b) After applying dropout.

[Srivastava et al., 2014]

Model Ensemble in Neural Networks

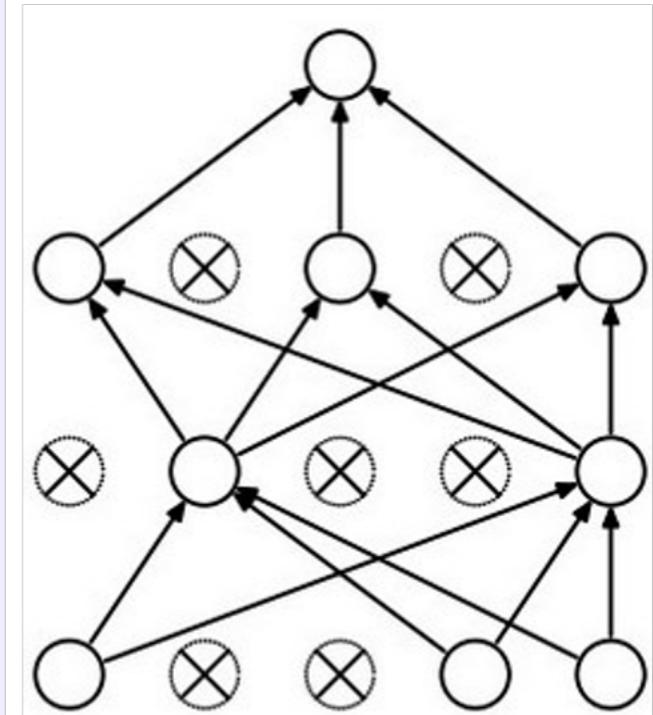
```
p = 0.5 # probability of keeping a unit active. higher = less dropout

def train_step(X):
    """ X contains the data """

    # forward pass for example 3-layer neural network
    H1 = np.maximum(0, np.dot(W1, X) + b1)
    U1 = np.random.rand(*H1.shape) < p # first dropout mask
    H1 *= U1 # drop!
    H2 = np.maximum(0, np.dot(W2, H1) + b2)
    U2 = np.random.rand(*H2.shape) < p # second dropout mask
    H2 *= U2 # drop!
    out = np.dot(W3, H2) + b3

    # backward pass: compute gradients... (not shown)
    # perform parameter update... (not shown)
```

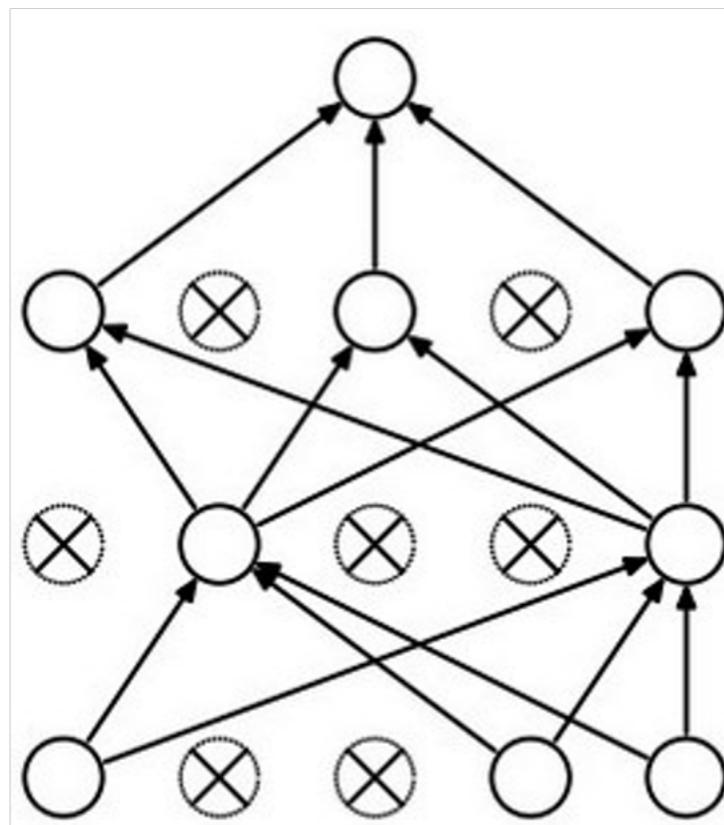
Example forward pass with a 3-layer network using dropout



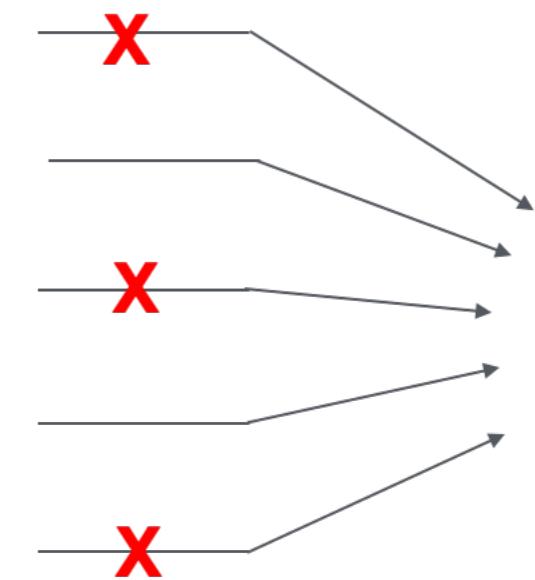
Model Ensemble in Neural Networks

Waaaait a second...

How could this possibly be a good idea?



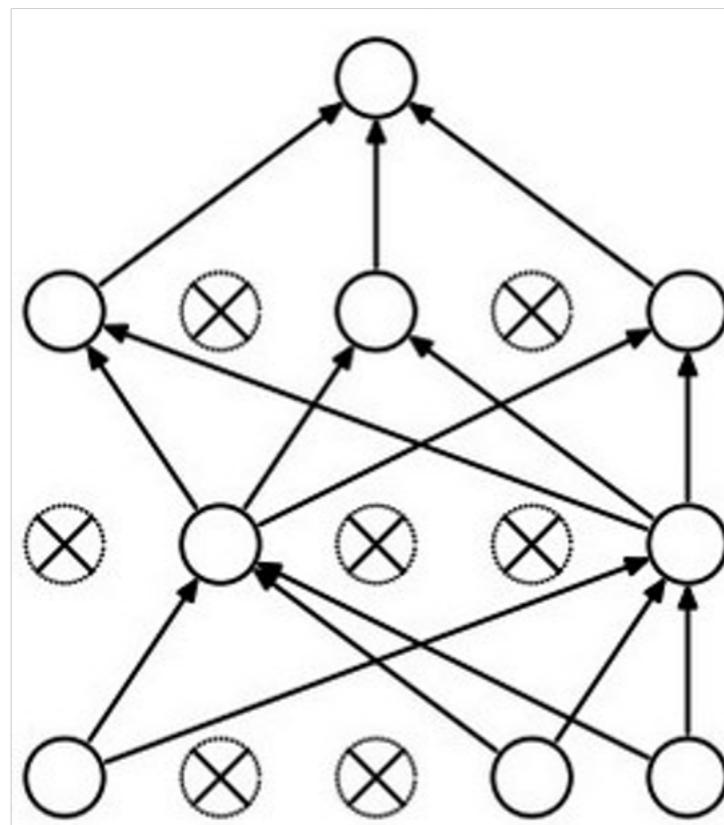
Forces the network to have a redundant representation.



Model Ensemble in Neural Networks

Waaaait a second...

How could this possibly be a good idea?



Another interpretation:

Dropout is training a large ensemble of models (that share parameters).

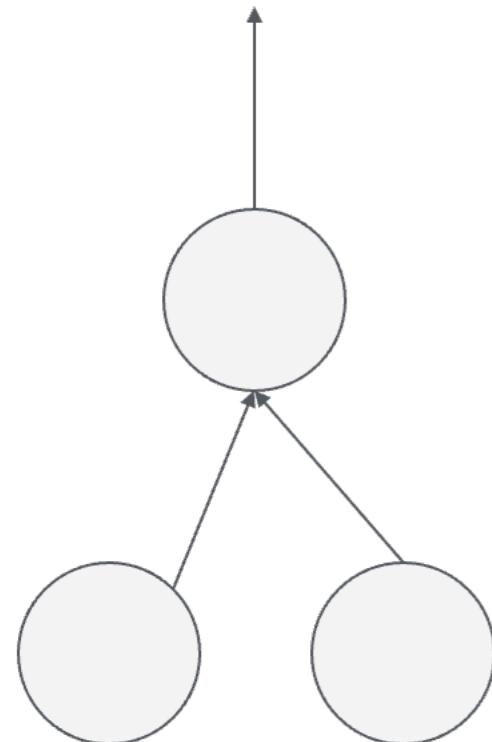
Each binary mask is one model, gets trained on only ~one datapoint.

Model Ensemble in Neural Networks

At test time....

Can in fact do this with a single forward pass! (approximately)

Leave all input neurons turned on (no dropout).

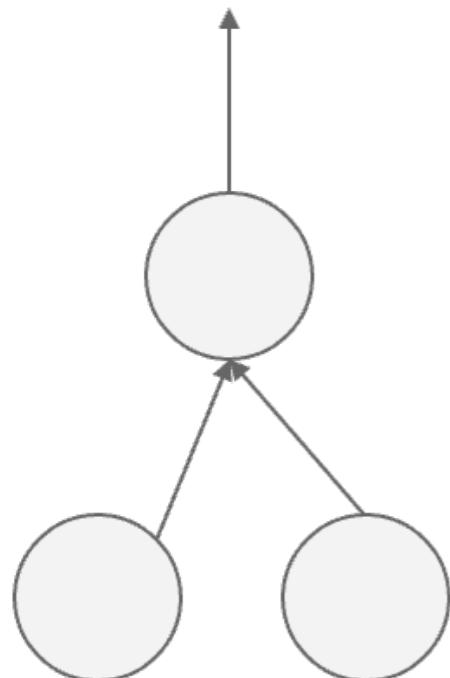


(this can be shown to be an approximation to evaluating the whole ensemble)

Model Ensemble in Neural Networks

At test time....

Can in fact do this with a single forward pass! (approximately)
Leave all input neurons turned on (no dropout).



Q: Suppose that with all inputs present at test time the output of this neuron is x .

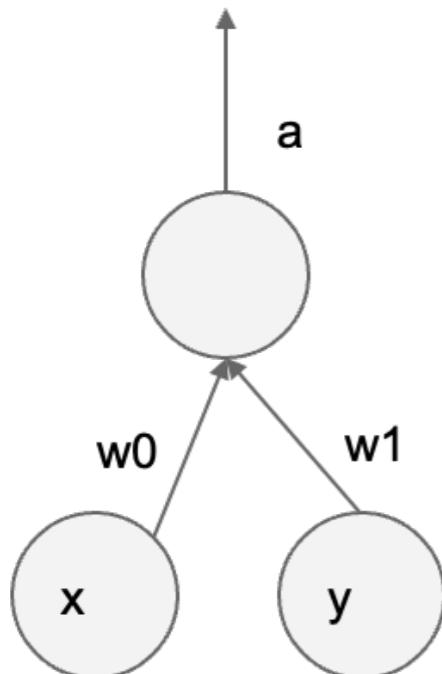
What would its output be during training time, in expectation? (e.g. if $p = 0.5$)

Model Ensemble in Neural Networks

At test time....

Can in fact do this with a single forward pass! (approximately)

Leave all input neurons turned on (no dropout).



during test: $\mathbf{a} = \mathbf{w0} * \mathbf{x} + \mathbf{w1} * \mathbf{y}$

during train:

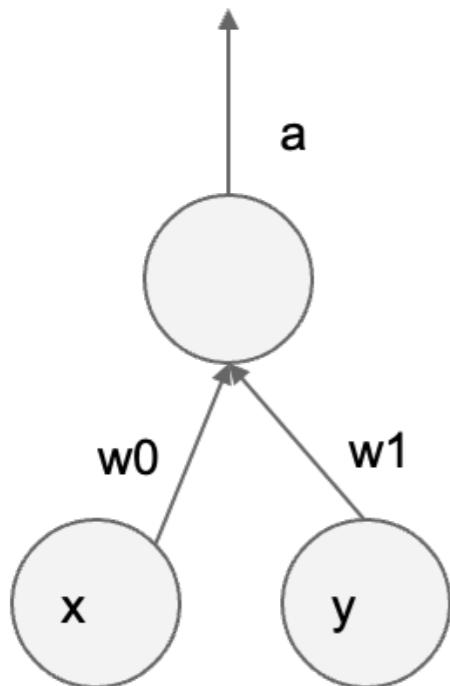
$$\begin{aligned} E[a] &= \frac{1}{4} * (w0 * 0 + w1 * 0 \\ &\quad w0 * 0 + w1 * y \\ &\quad w0 * x + w1 * 0 \\ &\quad w0 * x + w1 * y) \\ &= \frac{1}{4} * (2 w0 * x + 2 w1 * y) \\ &= \frac{1}{2} * (\mathbf{w0} * \mathbf{x} + \mathbf{w1} * \mathbf{y}) \end{aligned}$$

20

Model Ensemble in Neural Networks

At test time....

Can in fact do this with a single forward pass! (approximately)
Leave all input neurons turned on (no dropout).



during test: $\mathbf{a = w0*x + w1*y}$

during train:

$$\mathbf{E[a] = \frac{1}{4} * (w0*0 + w1*0}$$

$$\mathbf{w0*0 + w1*y}$$

$$\mathbf{w0*x + w1*0}$$

$$\mathbf{w0*x + w1*y})$$

$$\mathbf{= \frac{1}{4} * (2 w0*x + 2 w1*y)}$$

$$\mathbf{= \frac{1}{2} * (w0*x + w1*y)}$$

With $p=0.5$, using all inputs in the forward pass would inflate the activations by 2x from what the network was "used to" during training!
=> Have to compensate by scaling the activations back down by $\frac{1}{2}$

21

Model Ensemble in Neural Networks

We can do something approximate analytically

```
def predict(X):  
    # ensembled forward pass  
    H1 = np.maximum(0, np.dot(W1, X) + b1) * p # NOTE: scale the activations  
    H2 = np.maximum(0, np.dot(W2, H1) + b2) * p # NOTE: scale the activations  
    out = np.dot(W3, H2) + b3
```

At test time all neurons are active always

=> We must scale the activations so that for each neuron:

output at test time = expected output at training time

Model Ensemble in Neural Networks

```
""" Vanilla Dropout: Not recommended implementation (see notes below) """

p = 0.5 # probability of keeping a unit active. higher = less dropout

def train_step(X):
    """ X contains the data """

    # forward pass for example 3-layer neural network
    H1 = np.maximum(0, np.dot(W1, X) + b1)
    U1 = np.random.rand(*H1.shape) < p # first dropout mask
    H1 *= U1 # drop!
    H2 = np.maximum(0, np.dot(W2, H1) + b2)
    U2 = np.random.rand(*H2.shape) < p # second dropout mask
    H2 *= U2 # drop!
    out = np.dot(W3, H2) + b3

    # backward pass: compute gradients... (not shown)
    # perform parameter update... (not shown)

def predict(X):
    # ensembled forward pass
    H1 = np.maximum(0, np.dot(W1, X) + b1) * p # NOTE: scale the activations
    H2 = np.maximum(0, np.dot(W2, H1) + b2) * p # NOTE: scale the activations
    out = np.dot(W3, H2) + b3
```

Dropout Summary

drop in forward pass

scale at test time

Model Ensemble in Neural Networks

More common: “Inverted dropout”

```
p = 0.5 # probability of keeping a unit active. higher = less dropout

def train_step(X):
    # forward pass for example 3-layer neural network
    H1 = np.maximum(0, np.dot(W1, X) + b1)
    U1 = (np.random.rand(*H1.shape) < p) / p # first dropout mask. Notice /p!
    H1 *= U1 # drop!
    H2 = np.maximum(0, np.dot(W2, H1) + b2)
    U2 = (np.random.rand(*H2.shape) < p) / p # second dropout mask. Notice /p!
    H2 *= U2 # drop!
    out = np.dot(W3, H2) + b3

    # backward pass: compute gradients... (not shown)
    # perform parameter update... (not shown)

def predict(X):
    # ensembled forward pass
    H1 = np.maximum(0, np.dot(W1, X) + b1) # no scaling necessary
    H2 = np.maximum(0, np.dot(W2, H1) + b2)
    out = np.dot(W3, H2) + b3
```

test time is unchanged!